Browse Source
- Bumped version of lol.mleku.dev from v1.0.4 to v1.0.5. - Added new dependencies: p256k1.mleku.dev and several indirect dependencies for improved cryptographic functionality. - Refactored p256k package to utilize p256k1.mleku.dev/signer for signature operations, replacing the previous btcec implementation. - Removed the secp256k1.go file, consolidating the crypto logic under the new p256k1 library. - Updated documentation to reflect changes in the signer interface and usage.main
8 changed files with 87 additions and 574 deletions
@ -1,6 +1,9 @@
@@ -1,6 +1,9 @@
|
||||
// Package p256k is a signer interface that (by default) uses the
|
||||
// bitcoin/libsecp256k1 library for fast signature creation and verification of
|
||||
// the BIP-340 nostr X-only signatures and public keys, and ECDH.
|
||||
// Package p256k provides a signer interface that uses p256k1.mleku.dev library for
|
||||
// fast signature creation and verification of BIP-340 nostr X-only signatures and
|
||||
// public keys, and ECDH.
|
||||
//
|
||||
// Currently the ECDH is only implemented with the btcec library.
|
||||
// The package provides type aliases to p256k1.mleku.dev/signer:
|
||||
// - cgo: Uses the CGO-optimized version from p256k1.mleku.dev
|
||||
// - btcec: Uses the btcec version from p256k1.mleku.dev
|
||||
// - default: Uses the pure Go version from p256k1.mleku.dev
|
||||
package p256k |
||||
|
||||
@ -0,0 +1,41 @@
@@ -0,0 +1,41 @@
|
||||
//go:build !cgo
|
||||
|
||||
package p256k |
||||
|
||||
import ( |
||||
"lol.mleku.dev/chk" |
||||
"next.orly.dev/pkg/encoders/hex" |
||||
"next.orly.dev/pkg/interfaces/signer" |
||||
p256k1signer "p256k1.mleku.dev/signer" |
||||
) |
||||
|
||||
func NewSecFromHex[V []byte | string](skh V) (sign signer.I, err error) { |
||||
sk := make([]byte, len(skh)/2) |
||||
if _, err = hex.DecBytes(sk, []byte(skh)); chk.E(err) { |
||||
return |
||||
} |
||||
sign = p256k1signer.NewBtcecSigner() |
||||
if err = sign.InitSec(sk); chk.E(err) { |
||||
return |
||||
} |
||||
return |
||||
} |
||||
|
||||
func NewPubFromHex[V []byte | string](pkh V) (sign signer.I, err error) { |
||||
pk := make([]byte, len(pkh)/2) |
||||
if _, err = hex.DecBytes(pk, []byte(pkh)); chk.E(err) { |
||||
return |
||||
} |
||||
sign = p256k1signer.NewBtcecSigner() |
||||
if err = sign.InitPub(pk); chk.E(err) { |
||||
return |
||||
} |
||||
return |
||||
} |
||||
|
||||
func HexToBin(hexStr string) (b []byte, err error) { |
||||
if b, err = hex.DecAppend(b, []byte(hexStr)); chk.E(err) { |
||||
return |
||||
} |
||||
return |
||||
} |
||||
@ -1,426 +0,0 @@
@@ -1,426 +0,0 @@
|
||||
//go:build cgo
|
||||
|
||||
package p256k |
||||
|
||||
import ( |
||||
"crypto/rand" |
||||
"unsafe" |
||||
|
||||
"lol.mleku.dev/chk" |
||||
"lol.mleku.dev/errorf" |
||||
"lol.mleku.dev/log" |
||||
"next.orly.dev/pkg/crypto/ec/schnorr" |
||||
"next.orly.dev/pkg/crypto/ec/secp256k1" |
||||
"next.orly.dev/pkg/crypto/sha256" |
||||
) |
||||
|
||||
/* |
||||
#cgo LDFLAGS: -lsecp256k1 |
||||
#include <secp256k1.h> |
||||
#include <secp256k1_schnorrsig.h> |
||||
#include <secp256k1_extrakeys.h> |
||||
*/ |
||||
import "C" |
||||
|
||||
type ( |
||||
Context = C.secp256k1_context |
||||
Uchar = C.uchar |
||||
Cint = C.int |
||||
SecKey = C.secp256k1_keypair |
||||
PubKey = C.secp256k1_xonly_pubkey |
||||
ECPubKey = C.secp256k1_pubkey |
||||
) |
||||
|
||||
var ( |
||||
ctx *Context |
||||
) |
||||
|
||||
func CreateContext() *Context { |
||||
return C.secp256k1_context_create( |
||||
C.SECP256K1_CONTEXT_SIGN | |
||||
C.SECP256K1_CONTEXT_VERIFY, |
||||
) |
||||
} |
||||
|
||||
func GetRandom() (u *Uchar) { |
||||
rnd := make([]byte, 32) |
||||
_, _ = rand.Read(rnd) |
||||
return ToUchar(rnd) |
||||
} |
||||
|
||||
func AssertLen(b []byte, length int, name string) (err error) { |
||||
if len(b) != length { |
||||
err = errorf.E("%s should be %d bytes, got %d", name, length, len(b)) |
||||
} |
||||
return |
||||
} |
||||
|
||||
func RandomizeContext(ctx *C.secp256k1_context) { |
||||
C.secp256k1_context_randomize(ctx, GetRandom()) |
||||
return |
||||
} |
||||
|
||||
func CreateRandomContext() (c *Context) { |
||||
c = CreateContext() |
||||
RandomizeContext(c) |
||||
return |
||||
} |
||||
|
||||
func init() { |
||||
if ctx = CreateContext(); ctx == nil { |
||||
panic("failed to create secp256k1 context") |
||||
} |
||||
} |
||||
|
||||
func ToUchar(b []byte) (u *Uchar) { return (*Uchar)(unsafe.Pointer(&b[0])) } |
||||
|
||||
type Sec struct { |
||||
Key SecKey |
||||
} |
||||
|
||||
func GenSec() (sec *Sec, err error) { |
||||
if _, _, sec, _, err = Generate(); chk.E(err) { |
||||
return |
||||
} |
||||
return |
||||
} |
||||
|
||||
func SecFromBytes(sk []byte) (sec *Sec, err error) { |
||||
sec = new(Sec) |
||||
if C.secp256k1_keypair_create(ctx, &sec.Key, ToUchar(sk)) != 1 { |
||||
err = errorf.E("failed to parse private key") |
||||
return |
||||
} |
||||
return |
||||
} |
||||
|
||||
func (s *Sec) Sec() *SecKey { return &s.Key } |
||||
|
||||
func (s *Sec) Pub() (p *Pub, err error) { |
||||
p = new(Pub) |
||||
if C.secp256k1_keypair_xonly_pub(ctx, &p.Key, nil, s.Sec()) != 1 { |
||||
err = errorf.E("pubkey derivation failed") |
||||
return |
||||
} |
||||
return |
||||
} |
||||
|
||||
// type PublicKey struct {
|
||||
// Key *C.secp256k1_pubkey
|
||||
// }
|
||||
//
|
||||
// func NewPublicKey() *PublicKey {
|
||||
// return &PublicKey{
|
||||
// Key: &C.secp256k1_pubkey{},
|
||||
// }
|
||||
// }
|
||||
|
||||
type XPublicKey struct { |
||||
Key *C.secp256k1_xonly_pubkey |
||||
} |
||||
|
||||
func NewXPublicKey() *XPublicKey { |
||||
return &XPublicKey{ |
||||
Key: &C.secp256k1_xonly_pubkey{}, |
||||
} |
||||
} |
||||
|
||||
// FromSecretBytes parses and processes what should be a secret key. If it is a correct key within the curve order, but
|
||||
// with a public key having an odd Y coordinate, it returns an error with the fixed key.
|
||||
func FromSecretBytes(skb []byte) ( |
||||
pkb []byte, |
||||
sec *Sec, |
||||
pub *XPublicKey, |
||||
// ecPub *PublicKey,
|
||||
err error, |
||||
) { |
||||
xpkb := make([]byte, schnorr.PubKeyBytesLen) |
||||
// clen := C.size_t(secp256k1.PubKeyBytesLenCompressed - 1)
|
||||
pkb = make([]byte, schnorr.PubKeyBytesLen) |
||||
var parity Cint |
||||
// ecPub = NewPublicKey()
|
||||
pub = NewXPublicKey() |
||||
sec = &Sec{} |
||||
uskb := ToUchar(skb) |
||||
res := C.secp256k1_keypair_create(ctx, &sec.Key, uskb) |
||||
if res != 1 { |
||||
err = errorf.E("failed to create secp256k1 keypair") |
||||
return |
||||
} |
||||
// C.secp256k1_keypair_pub(ctx, ecPub.Key, &sec.Key)
|
||||
// C.secp256k1_ec_pubkey_serialize(ctx, ToUchar(ecpkb), &clen, ecPub.Key,
|
||||
// C.SECP256K1_EC_COMPRESSED)
|
||||
// if ecpkb[0] != 2 {
|
||||
// log.W.ToSliceOfBytes("odd pubkey from %0x -> %0x", skb, ecpkb)
|
||||
// Negate(skb)
|
||||
// uskb = ToUchar(skb)
|
||||
// res = C.secp256k1_keypair_create(ctx, &sec.Key, uskb)
|
||||
// if res != 1 {
|
||||
// err = errorf.E("failed to create secp256k1 keypair")
|
||||
// return
|
||||
// }
|
||||
// C.secp256k1_keypair_pub(ctx, ecPub.Key, &sec.Key)
|
||||
// C.secp256k1_ec_pubkey_serialize(ctx, ToUchar(ecpkb), &clen, ecPub.Key, C.SECP256K1_EC_COMPRESSED)
|
||||
// C.secp256k1_keypair_xonly_pub(ctx, pub.Key, &parity, &sec.Key)
|
||||
// err = errors.New("provided secret generates a public key with odd Y coordinate, fixed version returned")
|
||||
// }
|
||||
C.secp256k1_keypair_xonly_pub(ctx, pub.Key, &parity, &sec.Key) |
||||
C.secp256k1_xonly_pubkey_serialize(ctx, ToUchar(xpkb), pub.Key) |
||||
pkb = xpkb |
||||
// log.I.S(sec, pub, skb, pkb)
|
||||
return |
||||
} |
||||
|
||||
// Generate gathers entropy to generate a full set of bytes and CGO values of it and derived from it to perform
|
||||
// signature and ECDH operations.
|
||||
func Generate() ( |
||||
skb, pkb []byte, |
||||
sec *Sec, |
||||
pub *XPublicKey, |
||||
err error, |
||||
) { |
||||
skb = make([]byte, secp256k1.SecKeyBytesLen) |
||||
pkb = make([]byte, schnorr.PubKeyBytesLen) |
||||
upkb := ToUchar(pkb) |
||||
var parity Cint |
||||
pub = NewXPublicKey() |
||||
sec = &Sec{} |
||||
for { |
||||
if _, err = rand.Read(skb); chk.E(err) { |
||||
return |
||||
} |
||||
uskb := ToUchar(skb) |
||||
if res := C.secp256k1_keypair_create(ctx, &sec.Key, uskb); res != 1 { |
||||
err = errorf.E("failed to create secp256k1 keypair") |
||||
continue |
||||
} |
||||
C.secp256k1_keypair_xonly_pub(ctx, pub.Key, &parity, &sec.Key) |
||||
C.secp256k1_xonly_pubkey_serialize(ctx, upkb, pub.Key) |
||||
break |
||||
} |
||||
return |
||||
} |
||||
|
||||
// Negate inverts a secret key so an odd prefix bit becomes even and vice versa.
|
||||
func Negate(uskb []byte) { C.secp256k1_ec_seckey_negate(ctx, ToUchar(uskb)) } |
||||
|
||||
type ECPub struct { |
||||
Key ECPubKey |
||||
} |
||||
|
||||
// ECPubFromSchnorrBytes converts a BIP-340 public key to its even standard 33 byte encoding.
|
||||
//
|
||||
// This function is for the purpose of getting a key to do ECDH from an x-only key.
|
||||
func ECPubFromSchnorrBytes(xkb []byte) (pub *ECPub, err error) { |
||||
if err = AssertLen(xkb, schnorr.PubKeyBytesLen, "pubkey"); chk.E(err) { |
||||
return |
||||
} |
||||
pub = &ECPub{} |
||||
p := append([]byte{0}, xkb...) |
||||
if C.secp256k1_ec_pubkey_parse( |
||||
ctx, &pub.Key, ToUchar(p), |
||||
secp256k1.PubKeyBytesLenCompressed, |
||||
) != 1 { |
||||
err = errorf.E("failed to parse pubkey from %0x", p) |
||||
log.I.S(pub) |
||||
return |
||||
} |
||||
return |
||||
} |
||||
|
||||
// // ECPubFromBytes parses a pubkey from 33 bytes to the bitcoin-core/secp256k1 struct.
|
||||
// func ECPubFromBytes(pkb []byte) (pub *ECPub, err error) {
|
||||
// if err = AssertLen(pkb, secp256k1.PubKeyBytesLenCompressed, "pubkey"); chk.E(err) {
|
||||
// return
|
||||
// }
|
||||
// pub = &ECPub{}
|
||||
// if C.secp256k1_ec_pubkey_parse(ctx, &pub.Key, ToUchar(pkb),
|
||||
// secp256k1.PubKeyBytesLenCompressed) != 1 {
|
||||
// err = errorf.E("failed to parse pubkey from %0x", pkb)
|
||||
// log.I.S(pub)
|
||||
// return
|
||||
// }
|
||||
// return
|
||||
// }
|
||||
|
||||
// Pub is a schnorr BIP-340 public key.
|
||||
type Pub struct { |
||||
Key PubKey |
||||
} |
||||
|
||||
// PubFromBytes creates a public key from raw bytes.
|
||||
func PubFromBytes(pk []byte) (pub *Pub, err error) { |
||||
if err = AssertLen(pk, schnorr.PubKeyBytesLen, "pubkey"); chk.E(err) { |
||||
return |
||||
} |
||||
pub = new(Pub) |
||||
if C.secp256k1_xonly_pubkey_parse(ctx, &pub.Key, ToUchar(pk)) != 1 { |
||||
err = errorf.E("failed to parse pubkey from %0x", pk) |
||||
return |
||||
} |
||||
return |
||||
} |
||||
|
||||
// PubB returns the contained public key as bytes.
|
||||
func (p *Pub) PubB() (b []byte) { |
||||
b = make([]byte, schnorr.PubKeyBytesLen) |
||||
C.secp256k1_xonly_pubkey_serialize(ctx, ToUchar(b), &p.Key) |
||||
return |
||||
} |
||||
|
||||
// Pub returns the public key as a PubKey.
|
||||
func (p *Pub) Pub() *PubKey { return &p.Key } |
||||
|
||||
// ToBytes returns the contained public key as bytes.
|
||||
func (p *Pub) ToBytes() (b []byte, err error) { |
||||
b = make([]byte, schnorr.PubKeyBytesLen) |
||||
if C.secp256k1_xonly_pubkey_serialize(ctx, ToUchar(b), p.Pub()) != 1 { |
||||
err = errorf.E("pubkey serialize failed") |
||||
return |
||||
} |
||||
return |
||||
} |
||||
|
||||
// Sign a message and return a schnorr BIP-340 64 byte signature.
|
||||
func Sign(msg *Uchar, sk *SecKey) (sig []byte, err error) { |
||||
sig = make([]byte, schnorr.SignatureSize) |
||||
c := CreateRandomContext() |
||||
if C.secp256k1_schnorrsig_sign32( |
||||
c, ToUchar(sig), msg, sk, |
||||
GetRandom(), |
||||
) != 1 { |
||||
err = errorf.E("failed to sign message") |
||||
return |
||||
} |
||||
return |
||||
} |
||||
|
||||
// SignFromBytes Signs a message using a provided secret key and message as raw bytes.
|
||||
func SignFromBytes(msg, sk []byte) (sig []byte, err error) { |
||||
var umsg *Uchar |
||||
if umsg, err = Msg(msg); chk.E(err) { |
||||
return |
||||
} |
||||
var sec *Sec |
||||
if sec, err = SecFromBytes(sk); chk.E(err) { |
||||
return |
||||
} |
||||
return Sign(umsg, sec.Sec()) |
||||
} |
||||
|
||||
// Msg checks that a message hash is correct, and converts it for use with a Signer.
|
||||
func Msg(b []byte) (id *Uchar, err error) { |
||||
if err = AssertLen(b, sha256.Size, "id"); chk.E(err) { |
||||
return |
||||
} |
||||
id = ToUchar(b) |
||||
return |
||||
} |
||||
|
||||
// Sig checks that a signature bytes is correct, and converts it for use with a Signer.
|
||||
func Sig(b []byte) (sig *Uchar, err error) { |
||||
if err = AssertLen(b, schnorr.SignatureSize, "sig"); chk.E(err) { |
||||
return |
||||
} |
||||
sig = ToUchar(b) |
||||
return |
||||
} |
||||
|
||||
// Verify a message signature matches the provided PubKey.
|
||||
func Verify(msg, sig *Uchar, pk *PubKey) (valid bool) { |
||||
return C.secp256k1_schnorrsig_verify(ctx, sig, msg, 32, pk) == 1 |
||||
} |
||||
|
||||
// VerifyFromBytes a signature from the raw bytes of the message hash, signature and public key
|
||||
func VerifyFromBytes(msg, sig, pk []byte) (err error) { |
||||
var umsg, usig *Uchar |
||||
if umsg, err = Msg(msg); chk.E(err) { |
||||
return |
||||
} |
||||
if usig, err = Sig(sig); chk.E(err) { |
||||
return |
||||
} |
||||
var pub *Pub |
||||
if pub, err = PubFromBytes(pk); chk.E(err) { |
||||
return |
||||
} |
||||
valid := Verify(umsg, usig, pub.Pub()) |
||||
if !valid { |
||||
err = errorf.E("failed to verify signature") |
||||
} |
||||
return |
||||
} |
||||
|
||||
// Zero wipes the memory of a SecKey by overwriting it three times with random data and then
|
||||
// zeroing it.
|
||||
func Zero(sk *SecKey) { |
||||
b := (*[96]byte)(unsafe.Pointer(sk))[:96] |
||||
for range 3 { |
||||
rand.Read(b) |
||||
// reverse the order and negate
|
||||
lb := len(b) |
||||
l := lb / 2 |
||||
for j := range l { |
||||
b[j] = ^b[lb-1-j] |
||||
} |
||||
} |
||||
for i := range b { |
||||
b[i] = 0 |
||||
} |
||||
} |
||||
|
||||
// Keygen is an implementation of a key miner designed to be used for vanity key generation with X-only BIP-340 keys.
|
||||
type Keygen struct { |
||||
secBytes, comprPubBytes []byte |
||||
secUchar, cmprPubUchar *Uchar |
||||
sec *Sec |
||||
// ecpub *PublicKey
|
||||
cmprLen C.size_t |
||||
} |
||||
|
||||
// NewKeygen allocates the required buffers for deriving a key. This should only be done once to avoid garbage and make
|
||||
// the key mining as fast as possible.
|
||||
//
|
||||
// This allocates everything and creates proper CGO variables needed for the generate function so they only need to be
|
||||
// allocated once per thread.
|
||||
func NewKeygen() (k *Keygen) { |
||||
k = new(Keygen) |
||||
k.cmprLen = C.size_t(secp256k1.PubKeyBytesLenCompressed) |
||||
k.secBytes = make([]byte, secp256k1.SecKeyBytesLen) |
||||
k.comprPubBytes = make([]byte, secp256k1.PubKeyBytesLenCompressed) |
||||
k.secUchar = ToUchar(k.secBytes) |
||||
k.cmprPubUchar = ToUchar(k.comprPubBytes) |
||||
k.sec = &Sec{} |
||||
// k.ecpub = NewPublicKey()
|
||||
return |
||||
} |
||||
|
||||
// Generate takes a pair of buffers for the secret and ec pubkey bytes and gathers new entropy and returns a valid
|
||||
// secret key and the compressed pubkey bytes for the partial collision search.
|
||||
//
|
||||
// The first byte of pubBytes must be sliced off before deriving the hex/Bech32 forms of the nostr public key.
|
||||
func (k *Keygen) Generate() ( |
||||
sec *Sec, |
||||
pub *XPublicKey, |
||||
pubBytes []byte, |
||||
err error, |
||||
) { |
||||
if _, err = rand.Read(k.secBytes); chk.E(err) { |
||||
return |
||||
} |
||||
if res := C.secp256k1_keypair_create( |
||||
ctx, &k.sec.Key, k.secUchar, |
||||
); res != 1 { |
||||
err = errorf.E("failed to create secp256k1 keypair") |
||||
return |
||||
} |
||||
var parity Cint |
||||
C.secp256k1_keypair_xonly_pub(ctx, pub.Key, &parity, &sec.Key) |
||||
// C.secp256k1_keypair_pub(ctx, k.ecpub.Key, &k.sec.Key)
|
||||
// C.secp256k1_ec_pubkey_serialize(ctx, k.cmprPubUchar, &k.cmprLen, k.ecpub.Key,
|
||||
// C.SECP256K1_EC_COMPRESSED)
|
||||
// pubBytes = k.comprPubBytes
|
||||
C.secp256k1_xonly_pubkey_serialize(ctx, ToUchar(pubBytes), pub.Key) |
||||
// pubBytes =
|
||||
return |
||||
} |
||||
Loading…
Reference in new issue