You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1222 lines
51 KiB
1222 lines
51 KiB
// Copyright (c) 2015-2022 The Decred developers |
|
// Copyright 2013-2014 The btcsuite developers |
|
// Use of this source code is governed by an ISC |
|
// license that can be found in the LICENSE file. |
|
|
|
package secp256k1 |
|
|
|
import ( |
|
"math/bits" |
|
|
|
"next.orly.dev/pkg/encoders/hex" |
|
) |
|
|
|
// References: |
|
// [SECG]: Recommended Elliptic Curve Domain Parameters |
|
// https://www.secg.org/sec2-v2.pdf |
|
// |
|
// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone) |
|
// |
|
// [BRID]: On Binary Representations of Integers with Digits -1, 0, 1 |
|
// (Prodinger, Helmut) |
|
// |
|
// [STWS]: Secure-TWS: Authenticating Node to Multi-user Communication in |
|
// Shared Sensor Networks (Oliveira, Leonardo B. et al) |
|
|
|
// All group operations are performed using Jacobian coordinates. For a given |
|
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1) |
|
// where x = x1/z1^2 and y = y1/z1^3. |
|
|
|
// hexToFieldVal converts the passed hex string into a FieldVal and will panic |
|
// if there is an error. This is only provided for the hard-coded constants so |
|
// errors in the source code can be detected. It will only (and must only) be |
|
// called with hard-coded values. |
|
func hexToFieldVal(s string) *FieldVal { |
|
b, err := hex.Dec(s) |
|
if err != nil { |
|
panic("invalid hex in source file: " + s) |
|
} |
|
var f FieldVal |
|
if overflow := f.SetByteSlice(b); overflow { |
|
panic("hex in source file overflows mod P: " + s) |
|
} |
|
return &f |
|
} |
|
|
|
// hexToModNScalar converts the passed hex string into a ModNScalar and will |
|
// panic if there is an error. This is only provided for the hard-coded |
|
// constants so errors in the source code can be detected. It will only (and |
|
// must only) be called with hard-coded values. |
|
func hexToModNScalar(s string) *ModNScalar { |
|
var isNegative bool |
|
if len(s) > 0 && s[0] == '-' { |
|
isNegative = true |
|
s = s[1:] |
|
} |
|
if len(s)%2 != 0 { |
|
s = "0" + s |
|
} |
|
b, err := hex.Dec(s) |
|
if err != nil { |
|
panic("invalid hex in source file: " + s) |
|
} |
|
var scalar ModNScalar |
|
if overflow := scalar.SetByteSlice(b); overflow { |
|
panic("hex in source file overflows mod N scalar: " + s) |
|
} |
|
if isNegative { |
|
scalar.Negate() |
|
} |
|
return &scalar |
|
} |
|
|
|
var ( |
|
// The following constants are used to accelerate scalar point |
|
// multiplication through the use of the endomorphism: |
|
// |
|
// φ(Q) ⟼ λ*Q = (β*Q.x mod p, Q.y) |
|
// |
|
// See the code in the deriveEndomorphismParams function in genprecomps.go |
|
// for details on their derivation. |
|
// |
|
// Additionally, see the scalar multiplication function in this file for |
|
// details on how they are used. |
|
endoNegLambda = hexToModNScalar("-5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72") |
|
endoBeta = hexToFieldVal("7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee") |
|
endoNegB1 = hexToModNScalar("e4437ed6010e88286f547fa90abfe4c3") |
|
endoNegB2 = hexToModNScalar("-3086d221a7d46bcde86c90e49284eb15") |
|
endoZ1 = hexToModNScalar("3086d221a7d46bcde86c90e49284eb153daa8a1471e8ca7f") |
|
endoZ2 = hexToModNScalar("e4437ed6010e88286f547fa90abfe4c4221208ac9df506c6") |
|
// Alternatively, the following parameters are valid as well, however, |
|
// benchmarks show them to be about 2% slower in practice. |
|
// endoNegLambda = hexToModNScalar("-ac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283ce") |
|
// endoBeta = hexToFieldVal("851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40") |
|
// endoNegB1 = hexToModNScalar("3086d221a7d46bcde86c90e49284eb15") |
|
// endoNegB2 = hexToModNScalar("-114ca50f7a8e2f3f657c1108d9d44cfd8") |
|
// endoZ1 = hexToModNScalar("114ca50f7a8e2f3f657c1108d9d44cfd95fbc92c10fddd145") |
|
// endoZ2 = hexToModNScalar("3086d221a7d46bcde86c90e49284eb153daa8a1471e8ca7f") |
|
) |
|
|
|
// JacobianPoint is an element of the group formed by the secp256k1 curve in |
|
// Jacobian projective coordinates and thus represents a point on the curve. |
|
type JacobianPoint struct { |
|
// The X coordinate in Jacobian projective coordinates. The affine point is |
|
// X/z^2. |
|
X FieldVal |
|
// The Y coordinate in Jacobian projective coordinates. The affine point is |
|
// Y/z^3. |
|
Y FieldVal |
|
// The Z coordinate in Jacobian projective coordinates. |
|
Z FieldVal |
|
} |
|
|
|
// MakeJacobianPoint returns a Jacobian point with the provided X, Y, and Z |
|
// coordinates. |
|
func MakeJacobianPoint(x, y, z *FieldVal) JacobianPoint { |
|
var p JacobianPoint |
|
p.X.Set(x) |
|
p.Y.Set(y) |
|
p.Z.Set(z) |
|
return p |
|
} |
|
|
|
// Set sets the Jacobian point to the provided point. |
|
func (p *JacobianPoint) Set(other *JacobianPoint) { |
|
p.X.Set(&other.X) |
|
p.Y.Set(&other.Y) |
|
p.Z.Set(&other.Z) |
|
} |
|
|
|
// ToAffine reduces the Z value of the existing point to 1 effectively |
|
// making it an affine coordinate in constant time. The point will be |
|
// normalized. |
|
func (p *JacobianPoint) ToAffine() { |
|
// Inversions are expensive and both point addition and point doubling |
|
// are faster when working with points that have a z value of one. So, |
|
// if the point needs to be converted to affine, go ahead and normalize |
|
// the point itself at the same time as the calculation is the same. |
|
var zInv, tempZ FieldVal |
|
zInv.Set(&p.Z).Inverse() // zInv = Z^-1 |
|
tempZ.SquareVal(&zInv) // tempZ = Z^-2 |
|
p.X.Mul(&tempZ) // X = X/Z^2 (mag: 1) |
|
p.Y.Mul(tempZ.Mul(&zInv)) // Y = Y/Z^3 (mag: 1) |
|
p.Z.SetInt(1) // Z = 1 (mag: 1) |
|
// Normalize the x and y values. |
|
p.X.Normalize() |
|
p.Y.Normalize() |
|
} |
|
|
|
// addZ1AndZ2EqualsOne adds two Jacobian points that are already known to have |
|
// z values of 1 and stores the result in the provided result param. That is to |
|
// say result = p1 + p2. It performs faster addition than the generic add |
|
// routine since less arithmetic is needed due to the ability to avoid the z |
|
// value multiplications. |
|
// |
|
// NOTE: The points must be normalized for this function to return the correct |
|
// result. The resulting point will be normalized. |
|
func addZ1AndZ2EqualsOne(p1, p2, result *JacobianPoint) { |
|
// To compute the point addition efficiently, this implementation splits |
|
// the equation into intermediate elements which are used to minimize |
|
// the number of field multiplications using the method shown at: |
|
// https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl |
|
// |
|
// In particular it performs the calculations using the following: |
|
// H = X2-X1, HH = H^2, I = 4*HH, J = H*I, r = 2*(Y2-Y1), V = X1*I |
|
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = 2*H |
|
// |
|
// This results in a cost of 4 field multiplications, 2 field squarings, |
|
// 6 field additions, and 5 integer multiplications. |
|
x1, y1 := &p1.X, &p1.Y |
|
x2, y2 := &p2.X, &p2.Y |
|
x3, y3, z3 := &result.X, &result.Y, &result.Z |
|
// When the x coordinates are the same for two points on the curve, the |
|
// y coordinates either must be the same, in which case it is point |
|
// doubling, or they are opposite and the result is the point at |
|
// infinity per the group law for elliptic curve cryptography. |
|
if x1.Equals(x2) { |
|
if y1.Equals(y2) { |
|
// Since x1 == x2 and y1 == y2, point doubling must be |
|
// done, otherwise the addition would end up dividing |
|
// by zero. |
|
DoubleNonConst(p1, result) |
|
return |
|
} |
|
// Since x1 == x2 and y1 == -y2, the sum is the point at |
|
// infinity per the group law. |
|
x3.SetInt(0) |
|
y3.SetInt(0) |
|
z3.SetInt(0) |
|
return |
|
} |
|
// Calculate X3, Y3, and Z3 according to the intermediate elements |
|
// breakdown above. |
|
var h, i, j, r, v FieldVal |
|
var negJ, neg2V, negX3 FieldVal |
|
h.Set(x1).Negate(1).Add(x2) // H = X2-X1 (mag: 3) |
|
i.SquareVal(&h).MulInt(4) // I = 4*H^2 (mag: 4) |
|
j.Mul2(&h, &i) // J = H*I (mag: 1) |
|
r.Set(y1).Negate(1).Add(y2).MulInt(2) // r = 2*(Y2-Y1) (mag: 6) |
|
v.Mul2(x1, &i) // V = X1*I (mag: 1) |
|
negJ.Set(&j).Negate(1) // negJ = -J (mag: 2) |
|
neg2V.Set(&v).MulInt(2).Negate(2) // neg2V = -(2*V) (mag: 3) |
|
x3.Set(&r).Square().Add(&negJ).Add(&neg2V) // X3 = r^2-J-2*V (mag: 6) |
|
negX3.Set(x3).Negate(6) // negX3 = -X3 (mag: 7) |
|
j.Mul(y1).MulInt(2).Negate(2) // J = -(2*Y1*J) (mag: 3) |
|
y3.Set(&v).Add(&negX3).Mul(&r).Add(&j) // Y3 = r*(V-X3)-2*Y1*J (mag: 4) |
|
z3.Set(&h).MulInt(2) // Z3 = 2*H (mag: 6) |
|
// Normalize the resulting field values as needed. |
|
x3.Normalize() |
|
y3.Normalize() |
|
z3.Normalize() |
|
} |
|
|
|
// addZ1EqualsZ2 adds two Jacobian points that are already known to have the |
|
// same z value and stores the result in the provided result param. That is to |
|
// say result = p1 + p2. It performs faster addition than the generic add |
|
// routine since less arithmetic is needed due to the known equivalence. |
|
// |
|
// NOTE: The points must be normalized for this function to return the correct |
|
// result. The resulting point will be normalized. |
|
func addZ1EqualsZ2(p1, p2, result *JacobianPoint) { |
|
// To compute the point addition efficiently, this implementation splits |
|
// the equation into intermediate elements which are used to minimize |
|
// the number of field multiplications using a slightly modified version |
|
// of the method shown at: |
|
// https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-zadd-2007-m |
|
// |
|
// In particular it performs the calculations using the following: |
|
// A = X2-X1, B = A^2, C=Y2-Y1, D = C^2, E = X1*B, ToSliceOfBytes = X2*B |
|
// X3 = D-E-ToSliceOfBytes, Y3 = C*(E-X3)-Y1*(ToSliceOfBytes-E), Z3 = Z1*A |
|
// |
|
// This results in a cost of 5 field multiplications, 2 field squarings, |
|
// 9 field additions, and 0 integer multiplications. |
|
x1, y1, z1 := &p1.X, &p1.Y, &p1.Z |
|
x2, y2 := &p2.X, &p2.Y |
|
x3, y3, z3 := &result.X, &result.Y, &result.Z |
|
// When the x coordinates are the same for two points on the curve, the |
|
// y coordinates either must be the same, in which case it is point |
|
// doubling, or they are opposite and the result is the point at |
|
// infinity per the group law for elliptic curve cryptography. |
|
if x1.Equals(x2) { |
|
if y1.Equals(y2) { |
|
// Since x1 == x2 and y1 == y2, point doubling must be |
|
// done, otherwise the addition would end up dividing |
|
// by zero. |
|
DoubleNonConst(p1, result) |
|
return |
|
} |
|
// Since x1 == x2 and y1 == -y2, the sum is the point at |
|
// infinity per the group law. |
|
x3.SetInt(0) |
|
y3.SetInt(0) |
|
z3.SetInt(0) |
|
return |
|
} |
|
|
|
// Calculate X3, Y3, and Z3 according to the intermediate elements |
|
// breakdown above. |
|
var a, b, c, d, err, f FieldVal |
|
var negX1, negY1, negE, negX3 FieldVal |
|
negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2) |
|
negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2) |
|
a.Set(&negX1).Add(x2) // A = X2-X1 (mag: 3) |
|
b.SquareVal(&a) // B = A^2 (mag: 1) |
|
c.Set(&negY1).Add(y2) // C = Y2-Y1 (mag: 3) |
|
d.SquareVal(&c) // D = C^2 (mag: 1) |
|
err.Mul2(x1, &b) // E = X1*B (mag: 1) |
|
negE.Set(&err).Negate(1) // negE = -E (mag: 2) |
|
f.Mul2(x2, &b) // ToSliceOfBytes = X2*B (mag: 1) |
|
x3.Add2(&err, &f).Negate(2).Add(&d) // X3 = D-E-ToSliceOfBytes (mag: 4) |
|
negX3.Set(x3).Negate(4) // negX3 = -X3 (mag: 5) |
|
y3.Set(y1).Mul(f.Add(&negE)).Negate(1) // Y3 = -(Y1*(ToSliceOfBytes-E)) (mag: 2) |
|
y3.Add(err.Add(&negX3).Mul(&c)) // Y3 = C*(E-X3)+Y3 (mag: 3) |
|
z3.Mul2(z1, &a) // Z3 = Z1*A (mag: 1) |
|
// Normalize the resulting field values as needed. |
|
x3.Normalize() |
|
y3.Normalize() |
|
z3.Normalize() |
|
} |
|
|
|
// addZ2EqualsOne adds two Jacobian points when the second point is already |
|
// known to have a z value of 1 (and the z value for the first point is not 1) |
|
// and stores the result in the provided result param. That is to say result = |
|
// p1 + p2. It performs faster addition than the generic add routine since |
|
// less arithmetic is needed due to the ability to avoid multiplications by the |
|
// second point's z value. |
|
// |
|
// NOTE: The points must be normalized for this function to return the correct |
|
// result. The resulting point will be normalized. |
|
func addZ2EqualsOne(p1, p2, result *JacobianPoint) { |
|
// To compute the point addition efficiently, this implementation splits |
|
// the equation into intermediate elements which are used to minimize |
|
// the number of field multiplications using the method shown at: |
|
// https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl |
|
// |
|
// In particular it performs the calculations using the following: |
|
// Z1Z1 = Z1^2, U2 = X2*Z1Z1, S2 = Y2*Z1*Z1Z1, H = U2-X1, HH = H^2, |
|
// I = 4*HH, J = H*I, r = 2*(S2-Y1), V = X1*I |
|
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = (Z1+H)^2-Z1Z1-HH |
|
// |
|
// This results in a cost of 7 field multiplications, 4 field squarings, |
|
// 9 field additions, and 4 integer multiplications. |
|
x1, y1, z1 := &p1.X, &p1.Y, &p1.Z |
|
x2, y2 := &p2.X, &p2.Y |
|
x3, y3, z3 := &result.X, &result.Y, &result.Z |
|
// When the x coordinates are the same for two points on the curve, the |
|
// y coordinates either must be the same, in which case it is point |
|
// doubling, or they are opposite and the result is the point at |
|
// infinity per the group law for elliptic curve cryptography. Since |
|
// any number of Jacobian coordinates can represent the same affine |
|
// point, the x and y values need to be converted to like terms. Due to |
|
// the assumption made for this function that the second point has a z |
|
// value of 1 (z2=1), the first point is already "converted". |
|
var z1z1, u2, s2 FieldVal |
|
z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1) |
|
u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1) |
|
s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1) |
|
if x1.Equals(&u2) { |
|
if y1.Equals(&s2) { |
|
// Since x1 == x2 and y1 == y2, point doubling must be |
|
// done, otherwise the addition would end up dividing |
|
// by zero. |
|
DoubleNonConst(p1, result) |
|
return |
|
} |
|
// Since x1 == x2 and y1 == -y2, the sum is the point at |
|
// infinity per the group law. |
|
x3.SetInt(0) |
|
y3.SetInt(0) |
|
z3.SetInt(0) |
|
return |
|
} |
|
// Calculate X3, Y3, and Z3 according to the intermediate elements |
|
// breakdown above. |
|
var h, hh, i, j, r, rr, v FieldVal |
|
var negX1, negY1, negX3 FieldVal |
|
negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2) |
|
h.Add2(&u2, &negX1) // H = U2-X1 (mag: 3) |
|
hh.SquareVal(&h) // HH = H^2 (mag: 1) |
|
i.Set(&hh).MulInt(4) // I = 4 * HH (mag: 4) |
|
j.Mul2(&h, &i) // J = H*I (mag: 1) |
|
negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2) |
|
r.Set(&s2).Add(&negY1).MulInt(2) // r = 2*(S2-Y1) (mag: 6) |
|
rr.SquareVal(&r) // rr = r^2 (mag: 1) |
|
v.Mul2(x1, &i) // V = X1*I (mag: 1) |
|
x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4) |
|
x3.Add(&rr) // X3 = r^2+X3 (mag: 5) |
|
negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6) |
|
y3.Set(y1).Mul(&j).MulInt(2).Negate(2) // Y3 = -(2*Y1*J) (mag: 3) |
|
y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4) |
|
z3.Add2(z1, &h).Square() // Z3 = (Z1+H)^2 (mag: 1) |
|
z3.Add(z1z1.Add(&hh).Negate(2)) // Z3 = Z3-(Z1Z1+HH) (mag: 4) |
|
// Normalize the resulting field values as needed. |
|
x3.Normalize() |
|
y3.Normalize() |
|
z3.Normalize() |
|
} |
|
|
|
// addGeneric adds two Jacobian points without any assumptions about the z |
|
// values of the two points and stores the result in the provided result param. |
|
// That is to say result = p1 + p2. It is the slowest of the add routines due |
|
// to requiring the most arithmetic. |
|
// |
|
// NOTE: The points must be normalized for this function to return the correct |
|
// result. The resulting point will be normalized. |
|
func addGeneric(p1, p2, result *JacobianPoint) { |
|
// To compute the point addition efficiently, this implementation splits |
|
// the equation into intermediate elements which are used to minimize |
|
// the number of field multiplications using the method shown at: |
|
// https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl |
|
// |
|
// In particular it performs the calculations using the following: |
|
// Z1Z1 = Z1^2, Z2Z2 = Z2^2, U1 = X1*Z2Z2, U2 = X2*Z1Z1, S1 = Y1*Z2*Z2Z2 |
|
// S2 = Y2*Z1*Z1Z1, H = U2-U1, I = (2*H)^2, J = H*I, r = 2*(S2-S1) |
|
// V = U1*I |
|
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*S1*J, Z3 = ((Z1+Z2)^2-Z1Z1-Z2Z2)*H |
|
// |
|
// This results in a cost of 11 field multiplications, 5 field squarings, |
|
// 9 field additions, and 4 integer multiplications. |
|
x1, y1, z1 := &p1.X, &p1.Y, &p1.Z |
|
x2, y2, z2 := &p2.X, &p2.Y, &p2.Z |
|
x3, y3, z3 := &result.X, &result.Y, &result.Z |
|
// When the x coordinates are the same for two points on the curve, the |
|
// y coordinates either must be the same, in which case it is point |
|
// doubling, or they are opposite and the result is the point at |
|
// infinity. Since any number of Jacobian coordinates can represent the |
|
// same affine point, the x and y values need to be converted to like |
|
// terms. |
|
var z1z1, z2z2, u1, u2, s1, s2 FieldVal |
|
z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1) |
|
z2z2.SquareVal(z2) // Z2Z2 = Z2^2 (mag: 1) |
|
u1.Set(x1).Mul(&z2z2).Normalize() // U1 = X1*Z2Z2 (mag: 1) |
|
u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1) |
|
s1.Set(y1).Mul(&z2z2).Mul(z2).Normalize() // S1 = Y1*Z2*Z2Z2 (mag: 1) |
|
s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1) |
|
if u1.Equals(&u2) { |
|
if s1.Equals(&s2) { |
|
// Since x1 == x2 and y1 == y2, point doubling must be |
|
// done, otherwise the addition would end up dividing |
|
// by zero. |
|
DoubleNonConst(p1, result) |
|
return |
|
} |
|
// Since x1 == x2 and y1 == -y2, the sum is the point at |
|
// infinity per the group law. |
|
x3.SetInt(0) |
|
y3.SetInt(0) |
|
z3.SetInt(0) |
|
return |
|
} |
|
// Calculate X3, Y3, and Z3 according to the intermediate elements |
|
// breakdown above. |
|
var h, i, j, r, rr, v FieldVal |
|
var negU1, negS1, negX3 FieldVal |
|
negU1.Set(&u1).Negate(1) // negU1 = -U1 (mag: 2) |
|
h.Add2(&u2, &negU1) // H = U2-U1 (mag: 3) |
|
i.Set(&h).MulInt(2).Square() // I = (2*H)^2 (mag: 1) |
|
j.Mul2(&h, &i) // J = H*I (mag: 1) |
|
negS1.Set(&s1).Negate(1) // negS1 = -S1 (mag: 2) |
|
r.Set(&s2).Add(&negS1).MulInt(2) // r = 2*(S2-S1) (mag: 6) |
|
rr.SquareVal(&r) // rr = r^2 (mag: 1) |
|
v.Mul2(&u1, &i) // V = U1*I (mag: 1) |
|
x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4) |
|
x3.Add(&rr) // X3 = r^2+X3 (mag: 5) |
|
negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6) |
|
y3.Mul2(&s1, &j).MulInt(2).Negate(2) // Y3 = -(2*S1*J) (mag: 3) |
|
y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4) |
|
z3.Add2(z1, z2).Square() // Z3 = (Z1+Z2)^2 (mag: 1) |
|
z3.Add(z1z1.Add(&z2z2).Negate(2)) // Z3 = Z3-(Z1Z1+Z2Z2) (mag: 4) |
|
z3.Mul(&h) // Z3 = Z3*H (mag: 1) |
|
// Normalize the resulting field values as needed. |
|
x3.Normalize() |
|
y3.Normalize() |
|
z3.Normalize() |
|
} |
|
|
|
// AddNonConst adds the passed Jacobian points together and stores the result in |
|
// the provided result param in *non-constant* time. |
|
// |
|
// NOTE: The points must be normalized for this function to return the correct |
|
// result. The resulting point will be normalized. |
|
func AddNonConst(p1, p2, result *JacobianPoint) { |
|
// The point at infinity is the identity according to the group law for |
|
// elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P. |
|
if (p1.X.IsZero() && p1.Y.IsZero()) || p1.Z.IsZero() { |
|
result.Set(p2) |
|
return |
|
} |
|
if (p2.X.IsZero() && p2.Y.IsZero()) || p2.Z.IsZero() { |
|
result.Set(p1) |
|
return |
|
} |
|
// Faster point addition can be achieved when certain assumptions are |
|
// met. For example, when both points have the same z value, arithmetic |
|
// on the z values can be avoided. This section thus checks for these |
|
// conditions and calls an appropriate add function which is accelerated |
|
// by using those assumptions. |
|
isZ1One := p1.Z.IsOne() |
|
isZ2One := p2.Z.IsOne() |
|
switch { |
|
case isZ1One && isZ2One: |
|
addZ1AndZ2EqualsOne(p1, p2, result) |
|
return |
|
case p1.Z.Equals(&p2.Z): |
|
addZ1EqualsZ2(p1, p2, result) |
|
return |
|
case isZ2One: |
|
addZ2EqualsOne(p1, p2, result) |
|
return |
|
} |
|
// None of the above assumptions are true, so fall back to generic |
|
// point addition. |
|
addGeneric(p1, p2, result) |
|
} |
|
|
|
// doubleZ1EqualsOne performs point doubling on the passed Jacobian point when |
|
// the point is already known to have a z value of 1 and stores the result in |
|
// the provided result param. That is to say result = 2*p. It performs faster |
|
// point doubling than the generic routine since less arithmetic is needed due |
|
// to the ability to avoid multiplication by the z value. |
|
// |
|
// NOTE: The resulting point will be normalized. |
|
func doubleZ1EqualsOne(p, result *JacobianPoint) { |
|
// This function uses the assumptions that z1 is 1, thus the point |
|
// doubling formulas reduce to: |
|
// |
|
// X3 = (3*X1^2)^2 - 8*X1*Y1^2 |
|
// Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4 |
|
// Z3 = 2*Y1 |
|
// |
|
// To compute the above efficiently, this implementation splits the |
|
// equation into intermediate elements which are used to minimize the |
|
// number of field multiplications in favor of field squarings which |
|
// are roughly 35% faster than field multiplications with the current |
|
// implementation at the time this was written. |
|
// |
|
// This uses a slightly modified version of the method shown at: |
|
// https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl |
|
// |
|
// In particular it performs the calculations using the following: |
|
// A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C) |
|
// E = 3*A, ToSliceOfBytes = E^2, X3 = ToSliceOfBytes-2*D, Y3 = E*(D-X3)-8*C |
|
// Z3 = 2*Y1 |
|
// |
|
// This results in a cost of 1 field multiplication, 5 field squarings, |
|
// 6 field additions, and 5 integer multiplications. |
|
x1, y1 := &p.X, &p.Y |
|
x3, y3, z3 := &result.X, &result.Y, &result.Z |
|
var a, b, c, d, err, f FieldVal |
|
z3.Set(y1).MulInt(2) // Z3 = 2*Y1 (mag: 2) |
|
a.SquareVal(x1) // A = X1^2 (mag: 1) |
|
b.SquareVal(y1) // B = Y1^2 (mag: 1) |
|
c.SquareVal(&b) // C = B^2 (mag: 1) |
|
b.Add(x1).Square() // B = (X1+B)^2 (mag: 1) |
|
d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3) |
|
d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8) |
|
err.Set(&a).MulInt(3) // E = 3*A (mag: 3) |
|
f.SquareVal(&err) // ToSliceOfBytes = E^2 (mag: 1) |
|
x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17) |
|
x3.Add(&f) // X3 = ToSliceOfBytes+X3 (mag: 18) |
|
f.Set(x3).Negate(18).Add(&d).Normalize() // ToSliceOfBytes = D-X3 (mag: 1) |
|
y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9) |
|
y3.Add(f.Mul(&err)) // Y3 = E*ToSliceOfBytes+Y3 (mag: 10) |
|
// Normalize the resulting field values as needed. |
|
x3.Normalize() |
|
y3.Normalize() |
|
z3.Normalize() |
|
} |
|
|
|
// doubleGeneric performs point doubling on the passed Jacobian point without |
|
// any assumptions about the z value and stores the result in the provided |
|
// result param. That is to say result = 2*p. It is the slowest of the point |
|
// doubling routines due to requiring the most arithmetic. |
|
// |
|
// NOTE: The resulting point will be normalized. |
|
func doubleGeneric(p, result *JacobianPoint) { |
|
// Point doubling formula for Jacobian coordinates for the secp256k1 |
|
// curve: |
|
// |
|
// X3 = (3*X1^2)^2 - 8*X1*Y1^2 |
|
// Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4 |
|
// Z3 = 2*Y1*Z1 |
|
// |
|
// To compute the above efficiently, this implementation splits the |
|
// equation into intermediate elements which are used to minimize the |
|
// number of field multiplications in favor of field squarings which |
|
// are roughly 35% faster than field multiplications with the current |
|
// implementation at the time this was written. |
|
// |
|
// This uses a slightly modified version of the method shown at: |
|
// https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l |
|
// |
|
// In particular it performs the calculations using the following: |
|
// A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C) |
|
// E = 3*A, ToSliceOfBytes = E^2, X3 = ToSliceOfBytes-2*D, Y3 = E*(D-X3)-8*C |
|
// Z3 = 2*Y1*Z1 |
|
// |
|
// This results in a cost of 1 field multiplication, 5 field squarings, |
|
// 6 field additions, and 5 integer multiplications. |
|
x1, y1, z1 := &p.X, &p.Y, &p.Z |
|
x3, y3, z3 := &result.X, &result.Y, &result.Z |
|
var a, b, c, d, err, f FieldVal |
|
z3.Mul2(y1, z1).MulInt(2) // Z3 = 2*Y1*Z1 (mag: 2) |
|
a.SquareVal(x1) // A = X1^2 (mag: 1) |
|
b.SquareVal(y1) // B = Y1^2 (mag: 1) |
|
c.SquareVal(&b) // C = B^2 (mag: 1) |
|
b.Add(x1).Square() // B = (X1+B)^2 (mag: 1) |
|
d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3) |
|
d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8) |
|
err.Set(&a).MulInt(3) // E = 3*A (mag: 3) |
|
f.SquareVal(&err) // ToSliceOfBytes = E^2 (mag: 1) |
|
x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17) |
|
x3.Add(&f) // X3 = ToSliceOfBytes+X3 (mag: 18) |
|
f.Set(x3).Negate(18).Add(&d).Normalize() // ToSliceOfBytes = D-X3 (mag: 1) |
|
y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9) |
|
y3.Add(f.Mul(&err)) // Y3 = E*ToSliceOfBytes+Y3 (mag: 10) |
|
// Normalize the resulting field values as needed. |
|
x3.Normalize() |
|
y3.Normalize() |
|
z3.Normalize() |
|
} |
|
|
|
// DoubleNonConst doubles the passed Jacobian point and stores the result in the |
|
// provided result parameter in *non-constant* time. |
|
// |
|
// NOTE: The point must be normalized for this function to return the correct |
|
// result. The resulting point will be normalized. |
|
func DoubleNonConst(p, result *JacobianPoint) { |
|
// Doubling the point at infinity is still infinity. |
|
if p.Y.IsZero() || p.Z.IsZero() { |
|
result.X.SetInt(0) |
|
result.Y.SetInt(0) |
|
result.Z.SetInt(0) |
|
return |
|
} |
|
// Slightly faster point doubling can be achieved when the z value is 1 |
|
// by avoiding the multiplication on the z value. This section calls |
|
// a point doubling function which is accelerated by using that |
|
// assumption when possible. |
|
if p.Z.IsOne() { |
|
doubleZ1EqualsOne(p, result) |
|
return |
|
} |
|
// Fall back to generic point doubling which works with arbitrary z |
|
// values. |
|
doubleGeneric(p, result) |
|
} |
|
|
|
// mulAdd64 multiplies the two passed base 2^64 digits together, adds the given |
|
// value to the result, and returns the 128-bit result via a (hi, lo) tuple |
|
// where the upper half of the bits are returned in hi and the lower half in lo. |
|
func mulAdd64(digit1, digit2, m uint64) (hi, lo uint64) { |
|
// Note the carry on the final add is safe to discard because the maximum |
|
// possible value is: |
|
// (2^64 - 1)(2^64 - 1) + (2^64 - 1) = 2^128 - 2^64 |
|
// and: |
|
// 2^128 - 2^64 < 2^128. |
|
var c uint64 |
|
hi, lo = bits.Mul64(digit1, digit2) |
|
lo, c = bits.Add64(lo, m, 0) |
|
hi, _ = bits.Add64(hi, 0, c) |
|
return hi, lo |
|
} |
|
|
|
// mulAdd64Carry multiplies the two passed base 2^64 digits together, adds both |
|
// the given value and carry to the result, and returns the 128-bit result via a |
|
// (hi, lo) tuple where the upper half of the bits are returned in hi and the |
|
// lower half in lo. |
|
func mulAdd64Carry(digit1, digit2, m, c uint64) (hi, lo uint64) { |
|
// Note the carry on the high order add is safe to discard because the |
|
// maximum possible value is: |
|
// (2^64 - 1)(2^64 - 1) + 2*(2^64 - 1) = 2^128 - 1 |
|
// and: |
|
// 2^128 - 1 < 2^128. |
|
var c2 uint64 |
|
hi, lo = mulAdd64(digit1, digit2, m) |
|
lo, c2 = bits.Add64(lo, c, 0) |
|
hi, _ = bits.Add64(hi, 0, c2) |
|
return hi, lo |
|
} |
|
|
|
// mul512Rsh320Round computes the full 512-bit product of the two given scalars, |
|
// right shifts the result by 320 bits, rounds to the nearest integer, and |
|
// returns the result in constant time. |
|
// |
|
// Note that despite the inputs and output being mod n scalars, the 512-bit |
|
// product is NOT reduced mod N prior to the right shift. This is intentional |
|
// because it is used for replacing division with multiplication and thus the |
|
// intermediate results must be done via a field extension to a larger field. |
|
func mul512Rsh320Round(n1, n2 *ModNScalar) ModNScalar { |
|
// Convert n1 and n2 to base 2^64 digits. |
|
n1Digit0 := uint64(n1.n[0]) | uint64(n1.n[1])<<32 |
|
n1Digit1 := uint64(n1.n[2]) | uint64(n1.n[3])<<32 |
|
n1Digit2 := uint64(n1.n[4]) | uint64(n1.n[5])<<32 |
|
n1Digit3 := uint64(n1.n[6]) | uint64(n1.n[7])<<32 |
|
n2Digit0 := uint64(n2.n[0]) | uint64(n2.n[1])<<32 |
|
n2Digit1 := uint64(n2.n[2]) | uint64(n2.n[3])<<32 |
|
n2Digit2 := uint64(n2.n[4]) | uint64(n2.n[5])<<32 |
|
n2Digit3 := uint64(n2.n[6]) | uint64(n2.n[7])<<32 |
|
// Compute the full 512-bit product n1*n2. |
|
var r0, r1, r2, r3, r4, r5, r6, r7, c uint64 |
|
// Terms resulting from the product of the first digit of the second number |
|
// by all digits of the first number. |
|
// |
|
// Note that r0 is ignored because it is not needed to compute the higher |
|
// terms and it is shifted out below anyway. |
|
c, _ = bits.Mul64(n2Digit0, n1Digit0) |
|
c, r1 = mulAdd64(n2Digit0, n1Digit1, c) |
|
c, r2 = mulAdd64(n2Digit0, n1Digit2, c) |
|
r4, r3 = mulAdd64(n2Digit0, n1Digit3, c) |
|
// Terms resulting from the product of the second digit of the second number |
|
// by all digits of the first number. |
|
// |
|
// Note that r1 is ignored because it is no longer needed to compute the |
|
// higher terms and it is shifted out below anyway. |
|
c, _ = mulAdd64(n2Digit1, n1Digit0, r1) |
|
c, r2 = mulAdd64Carry(n2Digit1, n1Digit1, r2, c) |
|
c, r3 = mulAdd64Carry(n2Digit1, n1Digit2, r3, c) |
|
r5, r4 = mulAdd64Carry(n2Digit1, n1Digit3, r4, c) |
|
// Terms resulting from the product of the third digit of the second number |
|
// by all digits of the first number. |
|
// |
|
// Note that r2 is ignored because it is no longer needed to compute the |
|
// higher terms and it is shifted out below anyway. |
|
c, _ = mulAdd64(n2Digit2, n1Digit0, r2) |
|
c, r3 = mulAdd64Carry(n2Digit2, n1Digit1, r3, c) |
|
c, r4 = mulAdd64Carry(n2Digit2, n1Digit2, r4, c) |
|
r6, r5 = mulAdd64Carry(n2Digit2, n1Digit3, r5, c) |
|
// Terms resulting from the product of the fourth digit of the second number |
|
// by all digits of the first number. |
|
// |
|
// Note that r3 is ignored because it is no longer needed to compute the |
|
// higher terms and it is shifted out below anyway. |
|
c, _ = mulAdd64(n2Digit3, n1Digit0, r3) |
|
c, r4 = mulAdd64Carry(n2Digit3, n1Digit1, r4, c) |
|
c, r5 = mulAdd64Carry(n2Digit3, n1Digit2, r5, c) |
|
r7, r6 = mulAdd64Carry(n2Digit3, n1Digit3, r6, c) |
|
// At this point the upper 256 bits of the full 512-bit product n1*n2 are in |
|
// r4..r7 (recall the low order results were discarded as noted above). |
|
// |
|
// Right shift the result 320 bits. Note that the MSB of r4 determines |
|
// whether or not to round because it is the final bit that is shifted out. |
|
// |
|
// Also, notice that r3..r7 would also ordinarily be set to 0 as well for |
|
// the full shift, but that is skipped since they are no longer used as |
|
// their values are known to be zero. |
|
roundBit := r4 >> 63 |
|
r2, r1, r0 = r7, r6, r5 |
|
// Conditionally add 1 depending on the round bit in constant time. |
|
r0, c = bits.Add64(r0, roundBit, 0) |
|
r1, c = bits.Add64(r1, 0, c) |
|
r2, r3 = bits.Add64(r2, 0, c) |
|
// Finally, convert the result to a mod n scalar. |
|
// |
|
// No modular reduction is needed because the result is guaranteed to be |
|
// less than the group order given the group order is > 2^255 and the |
|
// maximum possible value of the result is 2^192. |
|
var result ModNScalar |
|
result.n[0] = uint32(r0) |
|
result.n[1] = uint32(r0 >> 32) |
|
result.n[2] = uint32(r1) |
|
result.n[3] = uint32(r1 >> 32) |
|
result.n[4] = uint32(r2) |
|
result.n[5] = uint32(r2 >> 32) |
|
result.n[6] = uint32(r3) |
|
result.n[7] = uint32(r3 >> 32) |
|
return result |
|
} |
|
|
|
// splitK returns two scalars (k1 and k2) that are a balanced length-two |
|
// representation of the provided scalar such that k ≡ k1 + k2*λ (mod N), where |
|
// N is the secp256k1 group order. |
|
func splitK(k *ModNScalar) (ModNScalar, ModNScalar) { |
|
// The ultimate goal is to decompose k into two scalars that are around |
|
// half the bit length of k such that the following equation is satisfied: |
|
// |
|
// k1 + k2*λ ≡ k (mod n) |
|
// |
|
// The strategy used here is based on algorithm 3.74 from [GECC] with a few |
|
// modifications to make use of the more efficient mod n scalar type, avoid |
|
// some costly long divisions, and minimize the number of calculations. |
|
// |
|
// Start by defining a function that takes a vector v = <a,b> ∈ ℤ⨯ℤ: |
|
// |
|
// f(v) = a + bλ (mod n) |
|
// |
|
// Then, find two vectors, v1 = <a1,b1>, and v2 = <a2,b2> in ℤ⨯ℤ such that: |
|
// 1) v1 and v2 are linearly independent |
|
// 2) f(v1) = f(v2) = 0 |
|
// 3) v1 and v2 have small Euclidean norm |
|
// |
|
// The vectors that satisfy these properties are found via the Euclidean |
|
// algorithm and are precomputed since both n and λ are fixed values for the |
|
// secp256k1 curve. See genprecomps.go for derivation details. |
|
// |
|
// Next, consider k as a vector <k, 0> in ℚ⨯ℚ and by linear algebra write: |
|
// |
|
// <k, 0> = g1*v1 + g2*v2, where g1, g2 ∈ ℚ |
|
// |
|
// Note that, per above, the components of vector v1 are a1 and b1 while the |
|
// components of vector v2 are a2 and b2. Given the vectors v1 and v2 were |
|
// generated such that a1*b2 - a2*b1 = n, solving the equation for g1 and g2 |
|
// yields: |
|
// |
|
// g1 = b2*k / n |
|
// g2 = -b1*k / n |
|
// |
|
// Observe: |
|
// <k, 0> = g1*v1 + g2*v2 |
|
// = (b2*k/n)*<a1,b1> + (-b1*k/n)*<a2,b2> | substitute |
|
// = <a1*b2*k/n, b1*b2*k/n> + <-a2*b1*k/n, -b2*b1*k/n> | scalar mul |
|
// = <a1*b2*k/n - a2*b1*k/n, b1*b2*k/n - b2*b1*k/n> | vector add |
|
// = <[a1*b2*k - a2*b1*k]/n, 0> | simplify |
|
// = <k*[a1*b2 - a2*b1]/n, 0> | factor out k |
|
// = <k*n/n, 0> | substitute |
|
// = <k, 0> | simplify |
|
// |
|
// Now, consider an integer-valued vector v: |
|
// |
|
// v = c1*v1 + c2*v2, where c1, c2 ∈ ℤ (mod n) |
|
// |
|
// Since vectors v1 and v2 are linearly independent and were generated such |
|
// that f(v1) = f(v2) = 0, all possible scalars c1 and c2 also produce a |
|
// vector v such that f(v) = 0. |
|
// |
|
// In other words, c1 and c2 can be any integers and the resulting |
|
// decomposition will still satisfy the required equation. However, since |
|
// the goal is to produce a balanced decomposition that provides a |
|
// performance advantage by minimizing max(k1, k2), c1 and c2 need to be |
|
// integers close to g1 and g2, respectively, so the resulting vector v is |
|
// an integer-valued vector that is close to <k, 0>. |
|
// |
|
// Finally, consider the vector u: |
|
// |
|
// u = <k, 0> - v |
|
// |
|
// It follows that f(u) = k and thus the two components of vector u satisfy |
|
// the required equation: |
|
// |
|
// k1 + k2*λ ≡ k (mod n) |
|
// |
|
// Choosing c1 and c2: |
|
// ------------------- |
|
// |
|
// As mentioned above, c1 and c2 need to be integers close to g1 and g2, |
|
// respectively. The algorithm in [GECC] chooses the following values: |
|
// |
|
// c1 = round(g1) = round(b2*k / n) |
|
// c2 = round(g2) = round(-b1*k / n) |
|
// |
|
// However, as section 3.4.2 of [STWS] notes, the aforementioned approach |
|
// requires costly long divisions that can be avoided by precomputing |
|
// rounded estimates as follows: |
|
// |
|
// t = bitlen(n) + 1 |
|
// z1 = round(2^t * b2 / n) |
|
// z2 = round(2^t * -b1 / n) |
|
// |
|
// Then, use those precomputed estimates to perform a multiplication by k |
|
// along with a floored division by 2^t, which is a simple right shift by t: |
|
// |
|
// c1 = floor(k * z1 / 2^t) = (k * z1) >> t |
|
// c2 = floor(k * z2 / 2^t) = (k * z2) >> t |
|
// |
|
// Finally, round up if last bit discarded in the right shift by t is set by |
|
// adding 1. |
|
// |
|
// As a further optimization, rather than setting t = bitlen(n) + 1 = 257 as |
|
// stated by [STWS], this implementation uses a higher precision estimate of |
|
// t = bitlen(n) + 64 = 320 because it allows simplification of the shifts |
|
// in the internal calculations that are done via uint64s and also allows |
|
// the use of floor in the precomputations. |
|
// |
|
// Thus, the calculations this implementation uses are: |
|
// |
|
// z1 = floor(b2<<320 / n) | precomputed |
|
// z2 = floor((-b1)<<320) / n) | precomputed |
|
// c1 = ((k * z1) >> 320) + (((k * z1) >> 319) & 1) |
|
// c2 = ((k * z2) >> 320) + (((k * z2) >> 319) & 1) |
|
// |
|
// Putting it all together: |
|
// ------------------------ |
|
// |
|
// Calculate the following vectors using the values discussed above: |
|
// |
|
// v = c1*v1 + c2*v2 |
|
// u = <k, 0> - v |
|
// |
|
// The two components of the resulting vector v are: |
|
// va = c1*a1 + c2*a2 |
|
// vb = c1*b1 + c2*b2 |
|
// |
|
// Thus, the two components of the resulting vector u are: |
|
// k1 = k - va |
|
// k2 = 0 - vb = -vb |
|
// |
|
// As some final optimizations: |
|
// |
|
// 1) Note that k1 + k2*λ ≡ k (mod n) means that k1 ≡ k - k2*λ (mod n). |
|
// Therefore, the computation of va can be avoided to save two |
|
// field multiplications and a field addition. |
|
// |
|
// 2) Since k1 = k - k2*λ = k + k2*(-λ), an additional field negation is |
|
// saved by storing and using the negative version of λ. |
|
// |
|
// 3) Since k2 = -vb = -(c1*b1 + c2*b2) = c1*(-b1) + c2*(-b2), one more |
|
// field negation is saved by storing and using the negative versions of |
|
// b1 and b2. |
|
// |
|
// k2 = c1*(-b1) + c2*(-b2) |
|
// k1 = k + k2*(-λ) |
|
var k1, k2 ModNScalar |
|
c1 := mul512Rsh320Round(k, endoZ1) |
|
c2 := mul512Rsh320Round(k, endoZ2) |
|
k2.Add2(c1.Mul(endoNegB1), c2.Mul(endoNegB2)) |
|
k1.Mul2(&k2, endoNegLambda).Add(k) |
|
return k1, k2 |
|
} |
|
|
|
// nafScalar represents a positive integer up to a maximum value of 2^256 - 1 |
|
// encoded in non-adjacent form. |
|
// |
|
// NAF is a signed-digit representation where each digit can be +1, 0, or -1. |
|
// |
|
// In order to efficiently encode that information, this type uses two arrays, a |
|
// "positive" array where set bits represent the +1 signed digits and a |
|
// "negative" array where set bits represent the -1 signed digits. 0 is |
|
// represented by neither array having a bit set in that position. |
|
// |
|
// The Pos and Neg methods return the aforementioned positive and negative |
|
// arrays, respectively. |
|
type nafScalar struct { |
|
// pos houses the positive portion of the representation. An additional |
|
// byte is required for the positive portion because the NAF encoding can be |
|
// up to 1 bit longer than the normal binary encoding of the value. |
|
// |
|
// neg houses the negative portion of the representation. Even though the |
|
// additional byte is not required for the negative portion, since it can |
|
// never exceed the length of the normal binary encoding of the value, |
|
// keeping the same length for positive and negative portions simplifies |
|
// working with the representation and allows extra conditional branches to |
|
// be avoided. |
|
// |
|
// start and end specify the starting and ending index to use within the pos |
|
// and neg arrays, respectively. This allows fixed size arrays to be used |
|
// versus needing to dynamically allocate space on the heap. |
|
// |
|
// NOTE: The fields are defined in the order that they are to minimize the |
|
// padding on 32-bit and 64-bit platforms. |
|
pos [33]byte |
|
start, end uint8 |
|
neg [33]byte |
|
} |
|
|
|
// Pos returns the bytes of the encoded value with bits set in the positions |
|
// that represent a signed digit of +1. |
|
func (s *nafScalar) Pos() []byte { return s.pos[s.start:s.end] } |
|
|
|
// Neg returns the bytes of the encoded value with bits set in the positions |
|
// that represent a signed digit of -1. |
|
func (s *nafScalar) Neg() []byte { return s.neg[s.start:s.end] } |
|
|
|
// naf takes a positive integer up to a maximum value of 2^256 - 1 and returns |
|
// its non-adjacent form (NAF), which is a unique signed-digit representation |
|
// such that no two consecutive digits are nonzero. See the documentation for |
|
// the returned type for details on how the representation is encoded |
|
// efficiently and how to interpret it |
|
// |
|
// NAF is useful in that it has the fewest nonzero digits of any signed digit |
|
// representation, only 1/3rd of its digits are nonzero on average, and at least |
|
// half of the digits will be 0. |
|
// |
|
// The aforementioned properties are particularly beneficial for optimizing |
|
// elliptic curve point multiplication because they effectively minimize the |
|
// number of required point additions in exchange for needing to perform a mix |
|
// of fewer point additions and subtractions and possibly one additional point |
|
// doubling. This is an excellent tradeoff because subtraction of points has |
|
// the same computational complexity as addition of points and point doubling is |
|
// faster than both. |
|
func naf(k []byte) nafScalar { |
|
// Strip leading zero bytes. |
|
for len(k) > 0 && k[0] == 0x00 { |
|
k = k[1:] |
|
} |
|
// The non-adjacent form (NAF) of a positive integer k is an expression |
|
// k = ∑_(i=0, l-1) k_i * 2^i where k_i ∈ {0,±1}, k_(l-1) != 0, and no two |
|
// consecutive digits k_i are nonzero. |
|
// |
|
// The traditional method of computing the NAF of a positive integer is |
|
// given by algorithm 3.30 in [GECC]. It consists of repeatedly dividing k |
|
// by 2 and choosing the remainder so that the quotient (k−r)/2 is even |
|
// which ensures the next NAF digit is 0. This requires log_2(k) steps. |
|
// |
|
// However, in [BRID], Prodinger notes that a closed form expression for the |
|
// NAF representation is the bitwise difference 3k/2 - k/2. This is more |
|
// efficient as it can be computed in O(1) versus the O(log(n)) of the |
|
// traditional approach. |
|
// |
|
// The following code makes use of that formula to compute the NAF more |
|
// efficiently. |
|
// |
|
// To understand the logic here, observe that the only way the NAF has a |
|
// nonzero digit at a given bit is when either 3k/2 or k/2 has a bit set in |
|
// that position, but not both. In other words, the result of a bitwise |
|
// xor. This can be seen simply by considering that when the bits are the |
|
// same, the subtraction is either 0-0 or 1-1, both of which are 0. |
|
// |
|
// Further, observe that the "+1" digits in the result are contributed by |
|
// 3k/2 while the "-1" digits are from k/2. So, they can be determined by |
|
// taking the bitwise and of each respective value with the result of the |
|
// xor which identifies which bits are nonzero. |
|
// |
|
// Using that information, this loops backwards from the least significant |
|
// byte to the most significant byte while performing the aforementioned |
|
// calculations by propagating the potential carry and high order bit from |
|
// the next word during the right shift. |
|
kLen := len(k) |
|
var result nafScalar |
|
var carry uint8 |
|
for byteNum := kLen - 1; byteNum >= 0; byteNum-- { |
|
// Calculate k/2. Notice the carry from the previous word is added and |
|
// the low order bit from the next word is shifted in accordingly. |
|
kc := uint16(k[byteNum]) + uint16(carry) |
|
var nextWord uint8 |
|
if byteNum > 0 { |
|
nextWord = k[byteNum-1] |
|
} |
|
halfK := kc>>1 | uint16(nextWord<<7) |
|
// Calculate 3k/2 and determine the non-zero digits in the result. |
|
threeHalfK := kc + halfK |
|
nonZeroResultDigits := threeHalfK ^ halfK |
|
// Determine the signed digits {0, ±1}. |
|
result.pos[byteNum+1] = uint8(threeHalfK & nonZeroResultDigits) |
|
result.neg[byteNum+1] = uint8(halfK & nonZeroResultDigits) |
|
// Propagate the potential carry from the 3k/2 calculation. |
|
carry = uint8(threeHalfK >> 8) |
|
} |
|
result.pos[0] = carry |
|
// Set the starting and ending positions within the fixed size arrays to |
|
// identify the bytes that are actually used. This is important since the |
|
// encoding is big endian and thus trailing zero bytes changes its value. |
|
result.start = 1 - carry |
|
result.end = uint8(kLen + 1) |
|
return result |
|
} |
|
|
|
// ScalarMultNonConst multiplies k*P where k is a scalar modulo the curve order |
|
// and P is a point in Jacobian projective coordinates and stores the result in |
|
// the provided Jacobian point. |
|
// |
|
// NOTE: The point must be normalized for this function to return the correct |
|
// result. The resulting point will be normalized. |
|
func ScalarMultNonConst(k *ModNScalar, point, result *JacobianPoint) { |
|
// ------------------------------------------------------------------------- |
|
// This makes use of the following efficiently-computable endomorphism to |
|
// accelerate the computation: |
|
// |
|
// φ(P) ⟼ λ*P = (β*P.x mod p, P.y) |
|
// |
|
// In other words, there is a special scalar λ that every point on the |
|
// elliptic curve can be multiplied by that will result in the same point as |
|
// performing a single field multiplication of the point's X coordinate by |
|
// the special value β. |
|
// |
|
// This is useful because scalar point multiplication is significantly more |
|
// expensive than a single field multiplication given the former involves a |
|
// series of point doublings and additions which themselves consist of a |
|
// combination of several field multiplications, squarings, and additions. |
|
// |
|
// So, the idea behind making use of the endomorphism is thus to decompose |
|
// the scalar into two scalars that are each about half the bit length of |
|
// the original scalar such that: |
|
// |
|
// k ≡ k1 + k2*λ (mod n) |
|
// |
|
// This in turn allows the scalar point multiplication to be performed as a |
|
// sum of two smaller half-length multiplications as follows: |
|
// |
|
// k*P = (k1 + k2*λ)*P |
|
// = k1*P + k2*λ*P |
|
// = k1*P + k2*φ(P) |
|
// |
|
// Thus, a speedup is achieved so long as it's faster to decompose the |
|
// scalar, compute φ(P), and perform a simultaneous multiply of the |
|
// half-length point multiplications than it is to compute a full width |
|
// point multiplication. |
|
// |
|
// In practice, benchmarks show the current implementation provides a |
|
// speedup of around 30-35% versus not using the endomorphism. |
|
// |
|
// See section 3.5 in [GECC] for a more rigorous treatment. |
|
// ------------------------------------------------------------------------- |
|
|
|
// Per above, the main equation here to remember is: |
|
// k*P = k1*P + k2*φ(P) |
|
// |
|
// p1 below is P in the equation while p2 is φ(P) in the equation. |
|
// |
|
// NOTE: φ(x,y) = (β*x,y). The Jacobian z coordinates are the same, so this |
|
// math goes through. |
|
// |
|
// Also, calculate -p1 and -p2 for use in the NAF optimization. |
|
p1, p1Neg := new(JacobianPoint), new(JacobianPoint) |
|
p1.Set(point) |
|
p1Neg.Set(p1) |
|
p1Neg.Y.Negate(1).Normalize() |
|
p2, p2Neg := new(JacobianPoint), new(JacobianPoint) |
|
p2.Set(p1) |
|
p2.X.Mul(endoBeta).Normalize() |
|
p2Neg.Set(p2) |
|
p2Neg.Y.Negate(1).Normalize() |
|
// Decompose k into k1 and k2 such that k = k1 + k2*λ (mod n) where k1 and |
|
// k2 are around half the bit length of k in order to halve the number of EC |
|
// operations. |
|
// |
|
// Notice that this also flips the sign of the scalars and points as needed |
|
// to minimize the bit lengths of the scalars k1 and k2. |
|
// |
|
// This is done because the scalars are operating modulo the group order |
|
// which means that when they would otherwise be a small negative magnitude |
|
// they will instead be a large positive magnitude. Since the goal is for |
|
// the scalars to have a small magnitude to achieve a performance boost, use |
|
// their negation when they are greater than the half order of the group and |
|
// flip the positive and negative values of the corresponding point that |
|
// will be multiplied by to compensate. |
|
// |
|
// In other words, transform the calc when k1 is over the half order to: |
|
// k1*P = -k1*-P |
|
// |
|
// Similarly, transform the calc when k2 is over the half order to: |
|
// k2*φ(P) = -k2*-φ(P) |
|
k1, k2 := splitK(k) |
|
if k1.IsOverHalfOrder() { |
|
k1.Negate() |
|
p1, p1Neg = p1Neg, p1 |
|
} |
|
if k2.IsOverHalfOrder() { |
|
k2.Negate() |
|
p2, p2Neg = p2Neg, p2 |
|
} |
|
// Convert k1 and k2 into their NAF representations since NAF has a lot more |
|
// zeros overall on average which minimizes the number of required point |
|
// additions in exchange for a mix of fewer point additions and subtractions |
|
// at the cost of one additional point doubling. |
|
// |
|
// This is an excellent tradeoff because subtraction of points has the same |
|
// computational complexity as addition of points and point doubling is |
|
// faster than both. |
|
// |
|
// Concretely, on average, 1/2 of all bits will be non-zero with the normal |
|
// binary representation whereas only 1/3rd of the bits will be non-zero |
|
// with NAF. |
|
// |
|
// The Pos version of the bytes contain the +1s and the Neg versions contain |
|
// the -1s. |
|
k1Bytes, k2Bytes := k1.Bytes(), k2.Bytes() |
|
k1NAF, k2NAF := naf(k1Bytes[:]), naf(k2Bytes[:]) |
|
k1PosNAF, k1NegNAF := k1NAF.Pos(), k1NAF.Neg() |
|
k2PosNAF, k2NegNAF := k2NAF.Pos(), k2NAF.Neg() |
|
k1Len, k2Len := len(k1PosNAF), len(k2PosNAF) |
|
// Add left-to-right using the NAF optimization. See algorithm 3.77 from |
|
// [GECC]. |
|
// |
|
// Point Q = ∞ (point at infinity). |
|
var q JacobianPoint |
|
m := k1Len |
|
if m < k2Len { |
|
m = k2Len |
|
} |
|
for i := 0; i < m; i++ { |
|
// Since k1 and k2 are potentially different lengths and the calculation |
|
// is being done left to right, pad the front of the shorter one with |
|
// 0s. |
|
var k1BytePos, k1ByteNeg, k2BytePos, k2ByteNeg byte |
|
if i >= m-k1Len { |
|
k1BytePos, k1ByteNeg = k1PosNAF[i-(m-k1Len)], k1NegNAF[i-(m-k1Len)] |
|
} |
|
if i >= m-k2Len { |
|
k2BytePos, k2ByteNeg = k2PosNAF[i-(m-k2Len)], k2NegNAF[i-(m-k2Len)] |
|
} |
|
for mask := uint8(1 << 7); mask > 0; mask >>= 1 { |
|
// Q = 2 * Q |
|
DoubleNonConst(&q, &q) |
|
// Add or subtract the first point based on the signed digit of the |
|
// NAF representation of k1 at this bit position. |
|
// |
|
// +1: Q = Q + p1 |
|
// -1: Q = Q - p1 |
|
// 0: Q = Q (no change) |
|
if k1BytePos&mask == mask { |
|
AddNonConst(&q, p1, &q) |
|
} else if k1ByteNeg&mask == mask { |
|
AddNonConst(&q, p1Neg, &q) |
|
} |
|
// Add or subtract the second point based on the signed digit of the |
|
// NAF representation of k2 at this bit position. |
|
// |
|
// +1: Q = Q + p2 |
|
// -1: Q = Q - p2 |
|
// 0: Q = Q (no change) |
|
if k2BytePos&mask == mask { |
|
AddNonConst(&q, p2, &q) |
|
} else if k2ByteNeg&mask == mask { |
|
AddNonConst(&q, p2Neg, &q) |
|
} |
|
} |
|
} |
|
result.Set(&q) |
|
} |
|
|
|
// ScalarBaseMultNonConst multiplies k*G where k is a scalar modulo the curve |
|
// order and G is the base point of the group and stores the result in the |
|
// provided Jacobian point. |
|
// |
|
// NOTE: The resulting point will be normalized. |
|
func ScalarBaseMultNonConst(k *ModNScalar, result *JacobianPoint) { |
|
bytePoints := BytePointTable |
|
// Start with the point at infinity. |
|
result.X.Zero() |
|
result.Y.Zero() |
|
result.Z.Zero() |
|
// bytePoints has all 256 byte points for each 8-bit window. The strategy |
|
// is to add up the byte points. This is best understood by expressing k in |
|
// base-256 which it already sort of is. Each "digit" in the 8-bit window |
|
// can be looked up using bytePoints and added together. |
|
kb := k.Bytes() |
|
for i := 0; i < len(kb); i++ { |
|
pt := &bytePoints[i][kb[i]] |
|
AddNonConst(result, pt, result) |
|
} |
|
} |
|
|
|
// isOnCurve returns whether or not the affine point (x,y) is on the curve. |
|
func isOnCurve(fx, fy *FieldVal) bool { |
|
// Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7 |
|
y2 := new(FieldVal).SquareVal(fy).Normalize() |
|
result := new(FieldVal).SquareVal(fx).Mul(fx).AddInt(7).Normalize() |
|
return y2.Equals(result) |
|
} |
|
|
|
// DecompressY attempts to calculate the Y coordinate for the given X coordinate |
|
// such that the result pair is a point on the secp256k1 curve. It adjusts Y |
|
// based on the desired oddness and returns whether or not it was successful |
|
// since not all X coordinates are valid. |
|
// |
|
// The magnitude of the provided X coordinate field val must be a max of 8 for a |
|
// correct result. The resulting Y field val will have a max magnitude of 2. |
|
func DecompressY(x *FieldVal, odd bool, resultY *FieldVal) bool { |
|
// The curve equation for secp256k1 is: y^2 = x^3 + 7. Thus |
|
// y = +-sqrt(x^3 + 7). |
|
// |
|
// The x coordinate must be invalid if there is no square root for the |
|
// calculated rhs because it means the X coordinate is not for a point on |
|
// the curve. |
|
x3PlusB := new(FieldVal).SquareVal(x).Mul(x).AddInt(7) |
|
if hasSqrt := resultY.SquareRootVal(x3PlusB); !hasSqrt { |
|
return false |
|
} |
|
if resultY.Normalize().IsOdd() != odd { |
|
resultY.Negate(1) |
|
} |
|
return true |
|
}
|
|
|