You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1418 lines
40 KiB
1418 lines
40 KiB
// Copyright 2010 The Go Authors. All rights reserved. |
|
// Use of this source code is governed by a BSD-style |
|
// license that can be found in the LICENSE file. |
|
|
|
//go:build !goexperiment.jsonv2 |
|
|
|
// Package json implements encoding and decoding of JSON as defined in RFC 7159. |
|
// The mapping between JSON and Go values is described in the documentation for |
|
// the Marshal and Unmarshal functions. |
|
// |
|
// See "JSON and Go" for an introduction to this package: |
|
// https://golang.org/doc/articles/json_and_go.html |
|
// |
|
// # Security Considerations |
|
// |
|
// The JSON standard (RFC 7159) is lax in its definition of a number of parser |
|
// behaviors. As such, many JSON parsers behave differently in various |
|
// scenarios. These differences in parsers mean that systems that use multiple |
|
// independent JSON parser implementations may parse the same JSON object in |
|
// differing ways. |
|
// |
|
// Systems that rely on a JSON object being parsed consistently for security |
|
// purposes should be careful to understand the behaviors of this parser, as |
|
// well as how these behaviors may cause interoperability issues with other |
|
// parser implementations. |
|
// |
|
// Due to the Go Backwards Compatibility promise (https://go.dev/doc/go1compat) |
|
// there are a number of behaviors this package exhibits that may cause |
|
// interopability issues, but cannot be changed. In particular the following |
|
// parsing behaviors may cause issues: |
|
// |
|
// - If a JSON object contains duplicate keys, keys are processed in the order |
|
// they are observed, meaning later values will replace or be merged into |
|
// prior values, depending on the field type (in particular maps and structs |
|
// will have values merged, while other types have values replaced). |
|
// - When parsing a JSON object into a Go struct, keys are considered in a |
|
// case-insensitive fashion. |
|
// - When parsing a JSON object into a Go struct, unknown keys in the JSON |
|
// object are ignored (unless a [Decoder] is used and |
|
// [Decoder.DisallowUnknownFields] has been called). |
|
// - Invalid UTF-8 bytes in JSON strings are replaced by the Unicode |
|
// replacement character. |
|
// - Large JSON number integers will lose precision when unmarshaled into |
|
// floating-point types. |
|
package json |
|
|
|
import ( |
|
"bytes" |
|
"cmp" |
|
"encoding" |
|
"encoding/base64" |
|
"fmt" |
|
"math" |
|
"reflect" |
|
"slices" |
|
"strconv" |
|
"strings" |
|
"sync" |
|
"unicode" |
|
"unicode/utf8" |
|
_ "unsafe" // for linkname |
|
) |
|
|
|
// Marshal returns the JSON encoding of v. |
|
// |
|
// Marshal traverses the value v recursively. |
|
// If an encountered value implements [Marshaler] |
|
// and is not a nil pointer, Marshal calls [Marshaler.MarshalJSON] |
|
// to produce JSON. If no [Marshaler.MarshalJSON] method is present but the |
|
// value implements [encoding.TextMarshaler] instead, Marshal calls |
|
// [encoding.TextMarshaler.MarshalText] and encodes the result as a JSON string. |
|
// The nil pointer exception is not strictly necessary |
|
// but mimics a similar, necessary exception in the behavior of |
|
// [Unmarshaler.UnmarshalJSON]. |
|
// |
|
// Otherwise, Marshal uses the following type-dependent default encodings: |
|
// |
|
// Boolean values encode as JSON booleans. |
|
// |
|
// Floating point, integer, and [Number] values encode as JSON numbers. |
|
// NaN and +/-Inf values will return an [UnsupportedValueError]. |
|
// |
|
// String values encode as JSON strings coerced to valid UTF-8, |
|
// replacing invalid bytes with the Unicode replacement rune. |
|
// So that the JSON will be safe to embed inside HTML <script> tags, |
|
// the string is encoded using [HTMLEscape], |
|
// which replaces "<", ">", "&", U+2028, and U+2029 are escaped |
|
// to "\u003c","\u003e", "\u0026", "\u2028", and "\u2029". |
|
// This replacement can be disabled when using an [Encoder], |
|
// by calling [Encoder.SetEscapeHTML](false). |
|
// |
|
// Array and slice values encode as JSON arrays, except that |
|
// []byte encodes as a base64-encoded string, and a nil slice |
|
// encodes as the null JSON value. |
|
// |
|
// Struct values encode as JSON objects. |
|
// Each exported struct field becomes a member of the object, using the |
|
// field name as the object key, unless the field is omitted for one of the |
|
// reasons given below. |
|
// |
|
// The encoding of each struct field can be customized by the format string |
|
// stored under the "json" key in the struct field's tag. |
|
// The format string gives the name of the field, possibly followed by a |
|
// comma-separated list of options. The name may be empty in order to |
|
// specify options without overriding the default field name. |
|
// |
|
// The "omitempty" option specifies that the field should be omitted |
|
// from the encoding if the field has an empty value, defined as |
|
// false, 0, a nil pointer, a nil interface value, and any array, |
|
// slice, map, or string of length zero. |
|
// |
|
// As a special case, if the field tag is "-", the field is always omitted. |
|
// Note that a field with name "-" can still be generated using the tag "-,". |
|
// |
|
// Examples of struct field tags and their meanings: |
|
// |
|
// // Field appears in JSON as key "myName". |
|
// Field int `json:"myName"` |
|
// |
|
// // Field appears in JSON as key "myName" and |
|
// // the field is omitted from the object if its value is empty, |
|
// // as defined above. |
|
// Field int `json:"myName,omitempty"` |
|
// |
|
// // Field appears in JSON as key "Field" (the default), but |
|
// // the field is skipped if empty. |
|
// // Note the leading comma. |
|
// Field int `json:",omitempty"` |
|
// |
|
// // Field is ignored by this package. |
|
// Field int `json:"-"` |
|
// |
|
// // Field appears in JSON as key "-". |
|
// Field int `json:"-,"` |
|
// |
|
// The "omitzero" option specifies that the field should be omitted |
|
// from the encoding if the field has a zero value, according to rules: |
|
// |
|
// 1) If the field type has an "IsZero() bool" method, that will be used to |
|
// determine whether the value is zero. |
|
// |
|
// 2) Otherwise, the value is zero if it is the zero value for its type. |
|
// |
|
// If both "omitempty" and "omitzero" are specified, the field will be omitted |
|
// if the value is either empty or zero (or both). |
|
// |
|
// The "string" option signals that a field is stored as JSON inside a |
|
// JSON-encoded string. It applies only to fields of string, floating point, |
|
// integer, or boolean types. This extra level of encoding is sometimes used |
|
// when communicating with JavaScript programs: |
|
// |
|
// Int64String int64 `json:",string"` |
|
// |
|
// The key name will be used if it's a non-empty string consisting of |
|
// only Unicode letters, digits, and ASCII punctuation except quotation |
|
// marks, backslash, and comma. |
|
// |
|
// Embedded struct fields are usually marshaled as if their inner exported fields |
|
// were fields in the outer struct, subject to the usual Go visibility rules amended |
|
// as described in the next paragraph. |
|
// An anonymous struct field with a name given in its JSON tag is treated as |
|
// having that name, rather than being anonymous. |
|
// An anonymous struct field of interface type is treated the same as having |
|
// that type as its name, rather than being anonymous. |
|
// |
|
// The Go visibility rules for struct fields are amended for JSON when |
|
// deciding which field to marshal or unmarshal. If there are |
|
// multiple fields at the same level, and that level is the least |
|
// nested (and would therefore be the nesting level selected by the |
|
// usual Go rules), the following extra rules apply: |
|
// |
|
// 1) Of those fields, if any are JSON-tagged, only tagged fields are considered, |
|
// even if there are multiple untagged fields that would otherwise conflict. |
|
// |
|
// 2) If there is exactly one field (tagged or not according to the first rule), that is selected. |
|
// |
|
// 3) Otherwise there are multiple fields, and all are ignored; no error occurs. |
|
// |
|
// Handling of anonymous struct fields is new in Go 1.1. |
|
// Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of |
|
// an anonymous struct field in both current and earlier versions, give the field |
|
// a JSON tag of "-". |
|
// |
|
// Map values encode as JSON objects. The map's key type must either be a |
|
// string, an integer type, or implement [encoding.TextMarshaler]. The map keys |
|
// are sorted and used as JSON object keys by applying the following rules, |
|
// subject to the UTF-8 coercion described for string values above: |
|
// - keys of any string type are used directly |
|
// - keys that implement [encoding.TextMarshaler] are marshaled |
|
// - integer keys are converted to strings |
|
// |
|
// Pointer values encode as the value pointed to. |
|
// A nil pointer encodes as the null JSON value. |
|
// |
|
// Interface values encode as the value contained in the interface. |
|
// A nil interface value encodes as the null JSON value. |
|
// |
|
// Channel, complex, and function values cannot be encoded in JSON. |
|
// Attempting to encode such a value causes Marshal to return |
|
// an [UnsupportedTypeError]. |
|
// |
|
// JSON cannot represent cyclic data structures and Marshal does not |
|
// handle them. Passing cyclic structures to Marshal will result in |
|
// an error. |
|
func Marshal(v any) ([]byte, error) { |
|
e := newEncodeState() |
|
defer encodeStatePool.Put(e) |
|
|
|
err := e.marshal(v, encOpts{escapeHTML: false}) |
|
if err != nil { |
|
return nil, err |
|
} |
|
buf := append([]byte(nil), e.Bytes()...) |
|
|
|
return buf, nil |
|
} |
|
|
|
// MarshalIndent is like [Marshal] but applies [Indent] to format the output. |
|
// Each JSON element in the output will begin on a new line beginning with prefix |
|
// followed by one or more copies of indent according to the indentation nesting. |
|
func MarshalIndent(v any, prefix, indent string) ([]byte, error) { |
|
b, err := Marshal(v) |
|
if err != nil { |
|
return nil, err |
|
} |
|
b2 := make([]byte, 0, indentGrowthFactor*len(b)) |
|
b2, err = appendIndent(b2, b, prefix, indent) |
|
if err != nil { |
|
return nil, err |
|
} |
|
return b2, nil |
|
} |
|
|
|
// Marshaler is the interface implemented by types that |
|
// can marshal themselves into valid JSON. |
|
type Marshaler interface { |
|
MarshalJSON() ([]byte, error) |
|
} |
|
|
|
// An UnsupportedTypeError is returned by [Marshal] when attempting |
|
// to encode an unsupported value type. |
|
type UnsupportedTypeError struct { |
|
Type reflect.Type |
|
} |
|
|
|
func (e *UnsupportedTypeError) Error() string { |
|
return "json: unsupported type: " + e.Type.String() |
|
} |
|
|
|
// An UnsupportedValueError is returned by [Marshal] when attempting |
|
// to encode an unsupported value. |
|
type UnsupportedValueError struct { |
|
Value reflect.Value |
|
Str string |
|
} |
|
|
|
func (e *UnsupportedValueError) Error() string { |
|
return "json: unsupported value: " + e.Str |
|
} |
|
|
|
// Before Go 1.2, an InvalidUTF8Error was returned by [Marshal] when |
|
// attempting to encode a string value with invalid UTF-8 sequences. |
|
// As of Go 1.2, [Marshal] instead coerces the string to valid UTF-8 by |
|
// replacing invalid bytes with the Unicode replacement rune U+FFFD. |
|
// |
|
// Deprecated: No longer used; kept for compatibility. |
|
type InvalidUTF8Error struct { |
|
S string // the whole string value that caused the error |
|
} |
|
|
|
func (e *InvalidUTF8Error) Error() string { |
|
return "json: invalid UTF-8 in string: " + strconv.Quote(e.S) |
|
} |
|
|
|
// A MarshalerError represents an error from calling a |
|
// [Marshaler.MarshalJSON] or [encoding.TextMarshaler.MarshalText] method. |
|
type MarshalerError struct { |
|
Type reflect.Type |
|
Err error |
|
sourceFunc string |
|
} |
|
|
|
func (e *MarshalerError) Error() string { |
|
srcFunc := e.sourceFunc |
|
if srcFunc == "" { |
|
srcFunc = "MarshalJSON" |
|
} |
|
return "json: error calling " + srcFunc + |
|
" for type " + e.Type.String() + |
|
": " + e.Err.Error() |
|
} |
|
|
|
// Unwrap returns the underlying error. |
|
func (e *MarshalerError) Unwrap() error { return e.Err } |
|
|
|
const hex = "0123456789abcdef" |
|
|
|
// An encodeState encodes JSON into a bytes.Buffer. |
|
type encodeState struct { |
|
bytes.Buffer // accumulated output |
|
|
|
// Keep track of what pointers we've seen in the current recursive call |
|
// path, to avoid cycles that could lead to a stack overflow. Only do |
|
// the relatively expensive map operations if ptrLevel is larger than |
|
// startDetectingCyclesAfter, so that we skip the work if we're within a |
|
// reasonable amount of nested pointers deep. |
|
ptrLevel uint |
|
ptrSeen map[any]struct{} |
|
} |
|
|
|
const startDetectingCyclesAfter = 1000 |
|
|
|
var encodeStatePool sync.Pool |
|
|
|
func newEncodeState() *encodeState { |
|
if v := encodeStatePool.Get(); v != nil { |
|
e := v.(*encodeState) |
|
e.Reset() |
|
if len(e.ptrSeen) > 0 { |
|
panic("ptrEncoder.encode should have emptied ptrSeen via defers") |
|
} |
|
e.ptrLevel = 0 |
|
return e |
|
} |
|
return &encodeState{ptrSeen: make(map[any]struct{})} |
|
} |
|
|
|
// jsonError is an error wrapper type for internal use only. |
|
// Panics with errors are wrapped in jsonError so that the top-level recover |
|
// can distinguish intentional panics from this package. |
|
type jsonError struct{ error } |
|
|
|
func (e *encodeState) marshal(v any, opts encOpts) (err error) { |
|
defer func() { |
|
if r := recover(); r != nil { |
|
if je, ok := r.(jsonError); ok { |
|
err = je.error |
|
} else { |
|
panic(r) |
|
} |
|
} |
|
}() |
|
e.reflectValue(reflect.ValueOf(v), opts) |
|
return nil |
|
} |
|
|
|
// error aborts the encoding by panicking with err wrapped in jsonError. |
|
func (e *encodeState) error(err error) { |
|
panic(jsonError{err}) |
|
} |
|
|
|
func isEmptyValue(v reflect.Value) bool { |
|
switch v.Kind() { |
|
case reflect.Array, reflect.Map, reflect.Slice, reflect.String: |
|
return v.Len() == 0 |
|
case reflect.Bool, |
|
reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, |
|
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr, |
|
reflect.Float32, reflect.Float64, |
|
reflect.Interface, reflect.Pointer: |
|
return v.IsZero() |
|
} |
|
return false |
|
} |
|
|
|
func (e *encodeState) reflectValue(v reflect.Value, opts encOpts) { |
|
valueEncoder(v)(e, v, opts) |
|
} |
|
|
|
type encOpts struct { |
|
// quoted causes primitive fields to be encoded inside JSON strings. |
|
quoted bool |
|
// escapeHTML causes '<', '>', and '&' to be escaped in JSON strings. |
|
escapeHTML bool |
|
} |
|
|
|
type encoderFunc func(e *encodeState, v reflect.Value, opts encOpts) |
|
|
|
var encoderCache sync.Map // map[reflect.Type]encoderFunc |
|
|
|
func valueEncoder(v reflect.Value) encoderFunc { |
|
if !v.IsValid() { |
|
return invalidValueEncoder |
|
} |
|
return typeEncoder(v.Type()) |
|
} |
|
|
|
func typeEncoder(t reflect.Type) encoderFunc { |
|
if fi, ok := encoderCache.Load(t); ok { |
|
return fi.(encoderFunc) |
|
} |
|
|
|
// To deal with recursive types, populate the map with an |
|
// indirect func before we build it. If the type is recursive, |
|
// the second lookup for the type will return the indirect func. |
|
// |
|
// This indirect func is only used for recursive types, |
|
// and briefly during racing calls to typeEncoder. |
|
indirect := sync.OnceValue( |
|
func() encoderFunc { |
|
return newTypeEncoder(t, true) |
|
}, |
|
) |
|
fi, loaded := encoderCache.LoadOrStore( |
|
t, encoderFunc( |
|
func(e *encodeState, v reflect.Value, opts encOpts) { |
|
indirect()(e, v, opts) |
|
}, |
|
), |
|
) |
|
if loaded { |
|
return fi.(encoderFunc) |
|
} |
|
|
|
f := indirect() |
|
encoderCache.Store(t, f) |
|
return f |
|
} |
|
|
|
var ( |
|
marshalerType = reflect.TypeFor[Marshaler]() |
|
textMarshalerType = reflect.TypeFor[encoding.TextMarshaler]() |
|
) |
|
|
|
// newTypeEncoder constructs an encoderFunc for a type. |
|
// The returned encoder only checks CanAddr when allowAddr is true. |
|
func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc { |
|
// If we have a non-pointer value whose type implements |
|
// Marshaler with a value receiver, then we're better off taking |
|
// the address of the value - otherwise we end up with an |
|
// allocation as we cast the value to an interface. |
|
if t.Kind() != reflect.Pointer && allowAddr && reflect.PointerTo(t).Implements(marshalerType) { |
|
return newCondAddrEncoder( |
|
addrMarshalerEncoder, newTypeEncoder(t, false), |
|
) |
|
} |
|
if t.Implements(marshalerType) { |
|
return marshalerEncoder |
|
} |
|
if t.Kind() != reflect.Pointer && allowAddr && reflect.PointerTo(t).Implements(textMarshalerType) { |
|
return newCondAddrEncoder( |
|
addrTextMarshalerEncoder, newTypeEncoder(t, false), |
|
) |
|
} |
|
if t.Implements(textMarshalerType) { |
|
return textMarshalerEncoder |
|
} |
|
|
|
switch t.Kind() { |
|
case reflect.Bool: |
|
return boolEncoder |
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: |
|
return intEncoder |
|
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: |
|
return uintEncoder |
|
case reflect.Float32: |
|
return float32Encoder |
|
case reflect.Float64: |
|
return float64Encoder |
|
case reflect.String: |
|
return stringEncoder |
|
case reflect.Interface: |
|
return interfaceEncoder |
|
case reflect.Struct: |
|
return newStructEncoder(t) |
|
case reflect.Map: |
|
return newMapEncoder(t) |
|
case reflect.Slice: |
|
return newSliceEncoder(t) |
|
case reflect.Array: |
|
return newArrayEncoder(t) |
|
case reflect.Pointer: |
|
return newPtrEncoder(t) |
|
default: |
|
return unsupportedTypeEncoder |
|
} |
|
} |
|
|
|
func invalidValueEncoder(e *encodeState, v reflect.Value, _ encOpts) { |
|
e.WriteString("null") |
|
} |
|
|
|
func marshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) { |
|
if v.Kind() == reflect.Pointer && v.IsNil() { |
|
e.WriteString("null") |
|
return |
|
} |
|
m, ok := v.Interface().(Marshaler) |
|
if !ok { |
|
e.WriteString("null") |
|
return |
|
} |
|
b, err := m.MarshalJSON() |
|
if err == nil { |
|
e.Grow(len(b)) |
|
out := e.AvailableBuffer() |
|
out, err = appendCompact(out, b, opts.escapeHTML) |
|
e.Buffer.Write(out) |
|
} |
|
if err != nil { |
|
e.error(&MarshalerError{v.Type(), err, "MarshalJSON"}) |
|
} |
|
} |
|
|
|
func addrMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) { |
|
va := v.Addr() |
|
if va.IsNil() { |
|
e.WriteString("null") |
|
return |
|
} |
|
m := va.Interface().(Marshaler) |
|
b, err := m.MarshalJSON() |
|
if err == nil { |
|
e.Grow(len(b)) |
|
out := e.AvailableBuffer() |
|
out, err = appendCompact(out, b, opts.escapeHTML) |
|
e.Buffer.Write(out) |
|
} |
|
if err != nil { |
|
e.error(&MarshalerError{v.Type(), err, "MarshalJSON"}) |
|
} |
|
} |
|
|
|
func textMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) { |
|
if v.Kind() == reflect.Pointer && v.IsNil() { |
|
e.WriteString("null") |
|
return |
|
} |
|
m, ok := v.Interface().(encoding.TextMarshaler) |
|
if !ok { |
|
e.WriteString("null") |
|
return |
|
} |
|
b, err := m.MarshalText() |
|
if err != nil { |
|
e.error(&MarshalerError{v.Type(), err, "MarshalText"}) |
|
} |
|
e.Write(appendString(e.AvailableBuffer(), b, opts.escapeHTML)) |
|
} |
|
|
|
func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) { |
|
va := v.Addr() |
|
if va.IsNil() { |
|
e.WriteString("null") |
|
return |
|
} |
|
m := va.Interface().(encoding.TextMarshaler) |
|
b, err := m.MarshalText() |
|
if err != nil { |
|
e.error(&MarshalerError{v.Type(), err, "MarshalText"}) |
|
} |
|
e.Write(appendString(e.AvailableBuffer(), b, opts.escapeHTML)) |
|
} |
|
|
|
func boolEncoder(e *encodeState, v reflect.Value, opts encOpts) { |
|
b := e.AvailableBuffer() |
|
b = mayAppendQuote(b, opts.quoted) |
|
b = strconv.AppendBool(b, v.Bool()) |
|
b = mayAppendQuote(b, opts.quoted) |
|
e.Write(b) |
|
} |
|
|
|
func intEncoder(e *encodeState, v reflect.Value, opts encOpts) { |
|
b := e.AvailableBuffer() |
|
b = mayAppendQuote(b, opts.quoted) |
|
b = strconv.AppendInt(b, v.Int(), 10) |
|
b = mayAppendQuote(b, opts.quoted) |
|
e.Write(b) |
|
} |
|
|
|
func uintEncoder(e *encodeState, v reflect.Value, opts encOpts) { |
|
b := e.AvailableBuffer() |
|
b = mayAppendQuote(b, opts.quoted) |
|
b = strconv.AppendUint(b, v.Uint(), 10) |
|
b = mayAppendQuote(b, opts.quoted) |
|
e.Write(b) |
|
} |
|
|
|
type floatEncoder int // number of bits |
|
|
|
func (bits floatEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { |
|
f := v.Float() |
|
if math.IsInf(f, 0) || math.IsNaN(f) { |
|
e.error( |
|
&UnsupportedValueError{ |
|
v, strconv.FormatFloat(f, 'g', -1, int(bits)), |
|
}, |
|
) |
|
} |
|
|
|
// Convert as if by ES6 number to string conversion. |
|
// This matches most other JSON generators. |
|
// See golang.org/issue/6384 and golang.org/issue/14135. |
|
// Like fmt %g, but the exponent cutoffs are different |
|
// and exponents themselves are not padded to two digits. |
|
b := e.AvailableBuffer() |
|
b = mayAppendQuote(b, opts.quoted) |
|
abs := math.Abs(f) |
|
fmt := byte('f') |
|
// Note: Must use float32 comparisons for underlying float32 value to get precise cutoffs right. |
|
if abs != 0 { |
|
if bits == 64 && (abs < 1e-6 || abs >= 1e21) || bits == 32 && (float32(abs) < 1e-6 || float32(abs) >= 1e21) { |
|
fmt = 'e' |
|
} |
|
} |
|
b = strconv.AppendFloat(b, f, fmt, -1, int(bits)) |
|
if fmt == 'e' { |
|
// clean up e-09 to e-9 |
|
n := len(b) |
|
if n >= 4 && b[n-4] == 'e' && b[n-3] == '-' && b[n-2] == '0' { |
|
b[n-2] = b[n-1] |
|
b = b[:n-1] |
|
} |
|
} |
|
b = mayAppendQuote(b, opts.quoted) |
|
e.Write(b) |
|
} |
|
|
|
var ( |
|
float32Encoder = (floatEncoder(32)).encode |
|
float64Encoder = (floatEncoder(64)).encode |
|
) |
|
|
|
func stringEncoder(e *encodeState, v reflect.Value, opts encOpts) { |
|
if v.Type() == numberType { |
|
numStr := v.String() |
|
// In Go1.5 the empty string encodes to "0", while this is not a valid number literal |
|
// we keep compatibility so check validity after this. |
|
if numStr == "" { |
|
numStr = "0" // Number's zero-val |
|
} |
|
if !isValidNumber(numStr) { |
|
e.error(fmt.Errorf("json: invalid number literal %q", numStr)) |
|
} |
|
b := e.AvailableBuffer() |
|
b = mayAppendQuote(b, opts.quoted) |
|
b = append(b, numStr...) |
|
b = mayAppendQuote(b, opts.quoted) |
|
e.Write(b) |
|
return |
|
} |
|
if opts.quoted { |
|
b := appendString(nil, v.String(), opts.escapeHTML) |
|
e.Write( |
|
appendString( |
|
e.AvailableBuffer(), b, false, |
|
), |
|
) // no need to escape again since it is already escaped |
|
} else { |
|
e.Write(appendString(e.AvailableBuffer(), v.String(), opts.escapeHTML)) |
|
} |
|
} |
|
|
|
// isValidNumber reports whether s is a valid JSON number literal. |
|
// |
|
// isValidNumber should be an internal detail, |
|
// but widely used packages access it using linkname. |
|
// Notable members of the hall of shame include: |
|
// - github.com/bytedance/sonic |
|
// |
|
// Do not remove or change the type signature. |
|
// See go.dev/issue/67401. |
|
// |
|
//go:linkname isValidNumber |
|
func isValidNumber(s string) bool { |
|
// This function implements the JSON numbers grammar. |
|
// See https://tools.ietf.org/html/rfc7159#section-6 |
|
// and https://www.json.org/img/number.png |
|
|
|
if s == "" { |
|
return false |
|
} |
|
|
|
// Optional - |
|
if s[0] == '-' { |
|
s = s[1:] |
|
if s == "" { |
|
return false |
|
} |
|
} |
|
|
|
// Digits |
|
switch { |
|
default: |
|
return false |
|
|
|
case s[0] == '0': |
|
s = s[1:] |
|
|
|
case '1' <= s[0] && s[0] <= '9': |
|
s = s[1:] |
|
for len(s) > 0 && '0' <= s[0] && s[0] <= '9' { |
|
s = s[1:] |
|
} |
|
} |
|
|
|
// . followed by 1 or more digits. |
|
if len(s) >= 2 && s[0] == '.' && '0' <= s[1] && s[1] <= '9' { |
|
s = s[2:] |
|
for len(s) > 0 && '0' <= s[0] && s[0] <= '9' { |
|
s = s[1:] |
|
} |
|
} |
|
|
|
// e or E followed by an optional - or + and |
|
// 1 or more digits. |
|
if len(s) >= 2 && (s[0] == 'e' || s[0] == 'E') { |
|
s = s[1:] |
|
if s[0] == '+' || s[0] == '-' { |
|
s = s[1:] |
|
if s == "" { |
|
return false |
|
} |
|
} |
|
for len(s) > 0 && '0' <= s[0] && s[0] <= '9' { |
|
s = s[1:] |
|
} |
|
} |
|
|
|
// Make sure we are at the end. |
|
return s == "" |
|
} |
|
|
|
func interfaceEncoder(e *encodeState, v reflect.Value, opts encOpts) { |
|
if v.IsNil() { |
|
e.WriteString("null") |
|
return |
|
} |
|
e.reflectValue(v.Elem(), opts) |
|
} |
|
|
|
func unsupportedTypeEncoder(e *encodeState, v reflect.Value, _ encOpts) { |
|
e.error(&UnsupportedTypeError{v.Type()}) |
|
} |
|
|
|
type structEncoder struct { |
|
fields structFields |
|
} |
|
|
|
type structFields struct { |
|
list []field |
|
byExactName map[string]*field |
|
byFoldedName map[string]*field |
|
} |
|
|
|
func (se structEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { |
|
next := byte('{') |
|
FieldLoop: |
|
for i := range se.fields.list { |
|
f := &se.fields.list[i] |
|
|
|
// Find the nested struct field by following f.index. |
|
fv := v |
|
for _, i := range f.index { |
|
if fv.Kind() == reflect.Pointer { |
|
if fv.IsNil() { |
|
continue FieldLoop |
|
} |
|
fv = fv.Elem() |
|
} |
|
fv = fv.Field(i) |
|
} |
|
|
|
if (f.omitEmpty && isEmptyValue(fv)) || |
|
(f.omitZero && (f.isZero == nil && fv.IsZero() || (f.isZero != nil && f.isZero(fv)))) { |
|
continue |
|
} |
|
e.WriteByte(next) |
|
next = ',' |
|
if opts.escapeHTML { |
|
e.WriteString(f.nameEscHTML) |
|
} else { |
|
e.WriteString(f.nameNonEsc) |
|
} |
|
opts.quoted = f.quoted |
|
f.encoder(e, fv, opts) |
|
} |
|
if next == '{' { |
|
e.WriteString("{}") |
|
} else { |
|
e.WriteByte('}') |
|
} |
|
} |
|
|
|
func newStructEncoder(t reflect.Type) encoderFunc { |
|
se := structEncoder{fields: cachedTypeFields(t)} |
|
return se.encode |
|
} |
|
|
|
type mapEncoder struct { |
|
elemEnc encoderFunc |
|
} |
|
|
|
func (me mapEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { |
|
if v.IsNil() { |
|
e.WriteString("null") |
|
return |
|
} |
|
if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter { |
|
// We're a large number of nested ptrEncoder.encode calls deep; |
|
// start checking if we've run into a pointer cycle. |
|
ptr := v.UnsafePointer() |
|
if _, ok := e.ptrSeen[ptr]; ok { |
|
e.error( |
|
&UnsupportedValueError{ |
|
v, fmt.Sprintf("encountered a cycle via %s", v.Type()), |
|
}, |
|
) |
|
} |
|
e.ptrSeen[ptr] = struct{}{} |
|
defer delete(e.ptrSeen, ptr) |
|
} |
|
e.WriteByte('{') |
|
|
|
// Extract and sort the keys. |
|
var ( |
|
sv = make([]reflectWithString, v.Len()) |
|
mi = v.MapRange() |
|
err error |
|
) |
|
for i := 0; mi.Next(); i++ { |
|
if sv[i].ks, err = resolveKeyName(mi.Key()); err != nil { |
|
e.error( |
|
fmt.Errorf( |
|
"json: encoding error for type %q: %q", v.Type().String(), |
|
err.Error(), |
|
), |
|
) |
|
} |
|
sv[i].v = mi.Value() |
|
} |
|
slices.SortFunc( |
|
sv, func(i, j reflectWithString) int { |
|
return strings.Compare(i.ks, j.ks) |
|
}, |
|
) |
|
|
|
for i, kv := range sv { |
|
if i > 0 { |
|
e.WriteByte(',') |
|
} |
|
e.Write(appendString(e.AvailableBuffer(), kv.ks, opts.escapeHTML)) |
|
e.WriteByte(':') |
|
me.elemEnc(e, kv.v, opts) |
|
} |
|
e.WriteByte('}') |
|
e.ptrLevel-- |
|
} |
|
|
|
func newMapEncoder(t reflect.Type) encoderFunc { |
|
switch t.Key().Kind() { |
|
case reflect.String, |
|
reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, |
|
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: |
|
default: |
|
if !t.Key().Implements(textMarshalerType) { |
|
return unsupportedTypeEncoder |
|
} |
|
} |
|
me := mapEncoder{typeEncoder(t.Elem())} |
|
return me.encode |
|
} |
|
|
|
func encodeByteSlice(e *encodeState, v reflect.Value, _ encOpts) { |
|
if v.IsNil() { |
|
e.WriteString("null") |
|
return |
|
} |
|
|
|
s := v.Bytes() |
|
b := e.AvailableBuffer() |
|
b = append(b, '"') |
|
b = base64.StdEncoding.AppendEncode(b, s) |
|
b = append(b, '"') |
|
e.Write(b) |
|
} |
|
|
|
// sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil. |
|
type sliceEncoder struct { |
|
arrayEnc encoderFunc |
|
} |
|
|
|
func (se sliceEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { |
|
if v.IsNil() { |
|
e.WriteString("null") |
|
return |
|
} |
|
if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter { |
|
// We're a large number of nested ptrEncoder.encode calls deep; |
|
// start checking if we've run into a pointer cycle. |
|
// Here we use a struct to memorize the pointer to the first element of the slice |
|
// and its length. |
|
ptr := struct { |
|
ptr any // always an unsafe.Pointer, but avoids a dependency on package unsafe |
|
len int |
|
}{v.UnsafePointer(), v.Len()} |
|
if _, ok := e.ptrSeen[ptr]; ok { |
|
e.error( |
|
&UnsupportedValueError{ |
|
v, fmt.Sprintf("encountered a cycle via %s", v.Type()), |
|
}, |
|
) |
|
} |
|
e.ptrSeen[ptr] = struct{}{} |
|
defer delete(e.ptrSeen, ptr) |
|
} |
|
se.arrayEnc(e, v, opts) |
|
e.ptrLevel-- |
|
} |
|
|
|
func newSliceEncoder(t reflect.Type) encoderFunc { |
|
// Byte slices get special treatment; arrays don't. |
|
if t.Elem().Kind() == reflect.Uint8 { |
|
p := reflect.PointerTo(t.Elem()) |
|
if !p.Implements(marshalerType) && !p.Implements(textMarshalerType) { |
|
return encodeByteSlice |
|
} |
|
} |
|
enc := sliceEncoder{newArrayEncoder(t)} |
|
return enc.encode |
|
} |
|
|
|
type arrayEncoder struct { |
|
elemEnc encoderFunc |
|
} |
|
|
|
func (ae arrayEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { |
|
e.WriteByte('[') |
|
n := v.Len() |
|
for i := 0; i < n; i++ { |
|
if i > 0 { |
|
e.WriteByte(',') |
|
} |
|
ae.elemEnc(e, v.Index(i), opts) |
|
} |
|
e.WriteByte(']') |
|
} |
|
|
|
func newArrayEncoder(t reflect.Type) encoderFunc { |
|
enc := arrayEncoder{typeEncoder(t.Elem())} |
|
return enc.encode |
|
} |
|
|
|
type ptrEncoder struct { |
|
elemEnc encoderFunc |
|
} |
|
|
|
func (pe ptrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) { |
|
if v.IsNil() { |
|
e.WriteString("null") |
|
return |
|
} |
|
if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter { |
|
// We're a large number of nested ptrEncoder.encode calls deep; |
|
// start checking if we've run into a pointer cycle. |
|
ptr := v.Interface() |
|
if _, ok := e.ptrSeen[ptr]; ok { |
|
e.error( |
|
&UnsupportedValueError{ |
|
v, fmt.Sprintf("encountered a cycle via %s", v.Type()), |
|
}, |
|
) |
|
} |
|
e.ptrSeen[ptr] = struct{}{} |
|
defer delete(e.ptrSeen, ptr) |
|
} |
|
pe.elemEnc(e, v.Elem(), opts) |
|
e.ptrLevel-- |
|
} |
|
|
|
func newPtrEncoder(t reflect.Type) encoderFunc { |
|
enc := ptrEncoder{typeEncoder(t.Elem())} |
|
return enc.encode |
|
} |
|
|
|
type condAddrEncoder struct { |
|
canAddrEnc, elseEnc encoderFunc |
|
} |
|
|
|
func (ce condAddrEncoder) encode( |
|
e *encodeState, v reflect.Value, opts encOpts, |
|
) { |
|
if v.CanAddr() { |
|
ce.canAddrEnc(e, v, opts) |
|
} else { |
|
ce.elseEnc(e, v, opts) |
|
} |
|
} |
|
|
|
// newCondAddrEncoder returns an encoder that checks whether its value |
|
// CanAddr and delegates to canAddrEnc if so, else to elseEnc. |
|
func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc { |
|
enc := condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc} |
|
return enc.encode |
|
} |
|
|
|
func isValidTag(s string) bool { |
|
if s == "" { |
|
return false |
|
} |
|
for _, c := range s { |
|
switch { |
|
case strings.ContainsRune("!#$%&()*+-./:;<=>?@[]^_{|}~ ", c): |
|
// Backslash and quote chars are reserved, but |
|
// otherwise any punctuation chars are allowed |
|
// in a tag name. |
|
case !unicode.IsLetter(c) && !unicode.IsDigit(c): |
|
return false |
|
} |
|
} |
|
return true |
|
} |
|
|
|
func typeByIndex(t reflect.Type, index []int) reflect.Type { |
|
for _, i := range index { |
|
if t.Kind() == reflect.Pointer { |
|
t = t.Elem() |
|
} |
|
t = t.Field(i).Type |
|
} |
|
return t |
|
} |
|
|
|
type reflectWithString struct { |
|
v reflect.Value |
|
ks string |
|
} |
|
|
|
func resolveKeyName(k reflect.Value) (string, error) { |
|
if k.Kind() == reflect.String { |
|
return k.String(), nil |
|
} |
|
if tm, ok := k.Interface().(encoding.TextMarshaler); ok { |
|
if k.Kind() == reflect.Pointer && k.IsNil() { |
|
return "", nil |
|
} |
|
buf, err := tm.MarshalText() |
|
return string(buf), err |
|
} |
|
switch k.Kind() { |
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: |
|
return strconv.FormatInt(k.Int(), 10), nil |
|
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: |
|
return strconv.FormatUint(k.Uint(), 10), nil |
|
} |
|
panic("unexpected map key type") |
|
} |
|
|
|
func appendString[Bytes []byte | string]( |
|
dst []byte, src Bytes, escapeHTML bool, |
|
) []byte { |
|
dst = append(dst, '"') |
|
start := 0 |
|
for i := 0; i < len(src); { |
|
if b := src[i]; b < utf8.RuneSelf { |
|
if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) { |
|
i++ |
|
continue |
|
} |
|
dst = append(dst, src[start:i]...) |
|
switch b { |
|
case '\\', '"': |
|
dst = append(dst, '\\', b) |
|
case '\b': |
|
dst = append(dst, '\\', 'b') |
|
case '\f': |
|
dst = append(dst, '\\', 'f') |
|
case '\n': |
|
dst = append(dst, '\\', 'n') |
|
case '\r': |
|
dst = append(dst, '\\', 'r') |
|
case '\t': |
|
dst = append(dst, '\\', 't') |
|
default: |
|
// This encodes bytes < 0x20 except for \b, \f, \n, \r and \t. |
|
// If escapeHTML is set, it also escapes <, >, and & |
|
// because they can lead to security holes when |
|
// user-controlled strings are rendered into JSON |
|
// and served to some browsers. |
|
dst = append(dst, '\\', 'u', '0', '0', hex[b>>4], hex[b&0xF]) |
|
} |
|
i++ |
|
start = i |
|
continue |
|
} |
|
// TODO(https://go.dev/issue/56948): Use generic utf8 functionality. |
|
// For now, cast only a small portion of byte slices to a string |
|
// so that it can be stack allocated. This slows down []byte slightly |
|
// due to the extra copy, but keeps string performance roughly the same. |
|
n := min(len(src)-i, utf8.UTFMax) |
|
c, size := utf8.DecodeRuneInString(string(src[i : i+n])) |
|
if c == utf8.RuneError && size == 1 { |
|
dst = append(dst, src[start:i]...) |
|
dst = append(dst, `\ufffd`...) |
|
i += size |
|
start = i |
|
continue |
|
} |
|
// U+2028 is LINE SEPARATOR. |
|
// U+2029 is PARAGRAPH SEPARATOR. |
|
// They are both technically valid characters in JSON strings, |
|
// but don't work in JSONP, which has to be evaluated as JavaScript, |
|
// and can lead to security holes there. It is valid JSON to |
|
// escape them, so we do so unconditionally. |
|
// See https://en.wikipedia.org/wiki/JSON#Safety. |
|
if c == '\u2028' || c == '\u2029' { |
|
dst = append(dst, src[start:i]...) |
|
dst = append(dst, '\\', 'u', '2', '0', '2', hex[c&0xF]) |
|
i += size |
|
start = i |
|
continue |
|
} |
|
i += size |
|
} |
|
dst = append(dst, src[start:]...) |
|
dst = append(dst, '"') |
|
return dst |
|
} |
|
|
|
// A field represents a single field found in a struct. |
|
type field struct { |
|
name string |
|
nameBytes []byte // []byte(name) |
|
|
|
nameNonEsc string // `"` + name + `":` |
|
nameEscHTML string // `"` + HTMLEscape(name) + `":` |
|
|
|
tag bool |
|
index []int |
|
typ reflect.Type |
|
omitEmpty bool |
|
omitZero bool |
|
isZero func(reflect.Value) bool |
|
quoted bool |
|
|
|
encoder encoderFunc |
|
} |
|
|
|
type isZeroer interface { |
|
IsZero() bool |
|
} |
|
|
|
var isZeroerType = reflect.TypeFor[isZeroer]() |
|
|
|
// typeFields returns a list of fields that JSON should recognize for the given type. |
|
// The algorithm is breadth-first search over the set of structs to include - the top struct |
|
// and then any reachable anonymous structs. |
|
// |
|
// typeFields should be an internal detail, |
|
// but widely used packages access it using linkname. |
|
// Notable members of the hall of shame include: |
|
// - github.com/bytedance/sonic |
|
// |
|
// Do not remove or change the type signature. |
|
// See go.dev/issue/67401. |
|
// |
|
//go:linkname typeFields |
|
func typeFields(t reflect.Type) structFields { |
|
// Anonymous fields to explore at the current level and the next. |
|
current := []field{} |
|
next := []field{{typ: t}} |
|
|
|
// Count of queued names for current level and the next. |
|
var count, nextCount map[reflect.Type]int |
|
|
|
// Types already visited at an earlier level. |
|
visited := map[reflect.Type]bool{} |
|
|
|
// Fields found. |
|
var fields []field |
|
|
|
// Buffer to run appendHTMLEscape on field names. |
|
var nameEscBuf []byte |
|
|
|
for len(next) > 0 { |
|
current, next = next, current[:0] |
|
count, nextCount = nextCount, map[reflect.Type]int{} |
|
|
|
for _, f := range current { |
|
if visited[f.typ] { |
|
continue |
|
} |
|
visited[f.typ] = true |
|
|
|
// Scan f.typ for fields to include. |
|
for i := 0; i < f.typ.NumField(); i++ { |
|
sf := f.typ.Field(i) |
|
if sf.Anonymous { |
|
t := sf.Type |
|
if t.Kind() == reflect.Pointer { |
|
t = t.Elem() |
|
} |
|
if !sf.IsExported() && t.Kind() != reflect.Struct { |
|
// Ignore embedded fields of unexported non-struct types. |
|
continue |
|
} |
|
// Do not ignore embedded fields of unexported struct types |
|
// since they may have exported fields. |
|
} else if !sf.IsExported() { |
|
// Ignore unexported non-embedded fields. |
|
continue |
|
} |
|
tag := sf.Tag.Get("json") |
|
if tag == "-" { |
|
continue |
|
} |
|
name, opts := parseTag(tag) |
|
if !isValidTag(name) { |
|
name = "" |
|
} |
|
index := make([]int, len(f.index)+1) |
|
copy(index, f.index) |
|
index[len(f.index)] = i |
|
|
|
ft := sf.Type |
|
if ft.Name() == "" && ft.Kind() == reflect.Pointer { |
|
// Follow pointer. |
|
ft = ft.Elem() |
|
} |
|
|
|
// Only strings, floats, integers, and booleans can be quoted. |
|
quoted := false |
|
if opts.Contains("string") { |
|
switch ft.Kind() { |
|
case reflect.Bool, |
|
reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, |
|
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr, |
|
reflect.Float32, reflect.Float64, |
|
reflect.String: |
|
quoted = true |
|
} |
|
} |
|
|
|
// Record found field and index sequence. |
|
if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct { |
|
tagged := name != "" |
|
if name == "" { |
|
name = sf.Name |
|
} |
|
field := field{ |
|
name: name, |
|
tag: tagged, |
|
index: index, |
|
typ: ft, |
|
omitEmpty: opts.Contains("omitempty"), |
|
omitZero: opts.Contains("omitzero"), |
|
quoted: quoted, |
|
} |
|
field.nameBytes = []byte(field.name) |
|
|
|
// Build nameEscHTML and nameNonEsc ahead of time. |
|
nameEscBuf = appendHTMLEscape( |
|
nameEscBuf[:0], field.nameBytes, |
|
) |
|
field.nameEscHTML = `"` + string(nameEscBuf) + `":` |
|
field.nameNonEsc = `"` + field.name + `":` |
|
|
|
if field.omitZero { |
|
t := sf.Type |
|
// Provide a function that uses a type's IsZero method. |
|
switch { |
|
case t.Kind() == reflect.Interface && t.Implements(isZeroerType): |
|
field.isZero = func(v reflect.Value) bool { |
|
// Avoid panics calling IsZero on a nil interface or |
|
// non-nil interface with nil pointer. |
|
return v.IsNil() || |
|
(v.Elem().Kind() == reflect.Pointer && v.Elem().IsNil()) || |
|
v.Interface().(isZeroer).IsZero() |
|
} |
|
case t.Kind() == reflect.Pointer && t.Implements(isZeroerType): |
|
field.isZero = func(v reflect.Value) bool { |
|
// Avoid panics calling IsZero on nil pointer. |
|
return v.IsNil() || v.Interface().(isZeroer).IsZero() |
|
} |
|
case t.Implements(isZeroerType): |
|
field.isZero = func(v reflect.Value) bool { |
|
return v.Interface().(isZeroer).IsZero() |
|
} |
|
case reflect.PointerTo(t).Implements(isZeroerType): |
|
field.isZero = func(v reflect.Value) bool { |
|
if !v.CanAddr() { |
|
// Temporarily box v so we can take the address. |
|
v2 := reflect.New(v.Type()).Elem() |
|
v2.Set(v) |
|
v = v2 |
|
} |
|
return v.Addr().Interface().(isZeroer).IsZero() |
|
} |
|
} |
|
} |
|
|
|
fields = append(fields, field) |
|
if count[f.typ] > 1 { |
|
// If there were multiple instances, add a second, |
|
// so that the annihilation code will see a duplicate. |
|
// It only cares about the distinction between 1 and 2, |
|
// so don't bother generating any more copies. |
|
fields = append(fields, fields[len(fields)-1]) |
|
} |
|
continue |
|
} |
|
|
|
// Record new anonymous struct to explore in next round. |
|
nextCount[ft]++ |
|
if nextCount[ft] == 1 { |
|
next = append( |
|
next, field{name: ft.Name(), index: index, typ: ft}, |
|
) |
|
} |
|
} |
|
} |
|
} |
|
|
|
slices.SortFunc( |
|
fields, func(a, b field) int { |
|
// sort field by name, breaking ties with depth, then |
|
// breaking ties with "name came from json tag", then |
|
// breaking ties with index sequence. |
|
if c := strings.Compare(a.name, b.name); c != 0 { |
|
return c |
|
} |
|
if c := cmp.Compare(len(a.index), len(b.index)); c != 0 { |
|
return c |
|
} |
|
if a.tag != b.tag { |
|
if a.tag { |
|
return -1 |
|
} |
|
return +1 |
|
} |
|
return slices.Compare(a.index, b.index) |
|
}, |
|
) |
|
|
|
// Delete all fields that are hidden by the Go rules for embedded fields, |
|
// except that fields with JSON tags are promoted. |
|
|
|
// The fields are sorted in primary order of name, secondary order |
|
// of field index length. Loop over names; for each name, delete |
|
// hidden fields by choosing the one dominant field that survives. |
|
out := fields[:0] |
|
for advance, i := 0, 0; i < len(fields); i += advance { |
|
// One iteration per name. |
|
// Find the sequence of fields with the name of this first field. |
|
fi := fields[i] |
|
name := fi.name |
|
for advance = 1; i+advance < len(fields); advance++ { |
|
fj := fields[i+advance] |
|
if fj.name != name { |
|
break |
|
} |
|
} |
|
if advance == 1 { // Only one field with this name |
|
out = append(out, fi) |
|
continue |
|
} |
|
dominant, ok := dominantField(fields[i : i+advance]) |
|
if ok { |
|
out = append(out, dominant) |
|
} |
|
} |
|
|
|
fields = out |
|
slices.SortFunc( |
|
fields, func(i, j field) int { |
|
return slices.Compare(i.index, j.index) |
|
}, |
|
) |
|
|
|
for i := range fields { |
|
f := &fields[i] |
|
f.encoder = typeEncoder(typeByIndex(t, f.index)) |
|
} |
|
exactNameIndex := make(map[string]*field, len(fields)) |
|
foldedNameIndex := make(map[string]*field, len(fields)) |
|
for i, field := range fields { |
|
exactNameIndex[field.name] = &fields[i] |
|
// For historical reasons, first folded match takes precedence. |
|
if _, ok := foldedNameIndex[string(foldName(field.nameBytes))]; !ok { |
|
foldedNameIndex[string(foldName(field.nameBytes))] = &fields[i] |
|
} |
|
} |
|
return structFields{fields, exactNameIndex, foldedNameIndex} |
|
} |
|
|
|
// dominantField looks through the fields, all of which are known to |
|
// have the same name, to find the single field that dominates the |
|
// others using Go's embedding rules, modified by the presence of |
|
// JSON tags. If there are multiple top-level fields, the boolean |
|
// will be false: This condition is an error in Go and we skip all |
|
// the fields. |
|
func dominantField(fields []field) (field, bool) { |
|
// The fields are sorted in increasing index-length order, then by presence of tag. |
|
// That means that the first field is the dominant one. We need only check |
|
// for error cases: two fields at top level, either both tagged or neither tagged. |
|
if len(fields) > 1 && len(fields[0].index) == len(fields[1].index) && fields[0].tag == fields[1].tag { |
|
return field{}, false |
|
} |
|
return fields[0], true |
|
} |
|
|
|
var fieldCache sync.Map // map[reflect.Type]structFields |
|
|
|
// cachedTypeFields is like typeFields but uses a cache to avoid repeated work. |
|
func cachedTypeFields(t reflect.Type) structFields { |
|
if f, ok := fieldCache.Load(t); ok { |
|
return f.(structFields) |
|
} |
|
f, _ := fieldCache.LoadOrStore(t, typeFields(t)) |
|
return f.(structFields) |
|
} |
|
|
|
func mayAppendQuote(b []byte, quoted bool) []byte { |
|
if quoted { |
|
b = append(b, '"') |
|
} |
|
return b |
|
}
|
|
|