You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
554 lines
22 KiB
554 lines
22 KiB
"use strict"; |
|
Object.defineProperty(exports, "__esModule", { value: true }); |
|
exports.isNegativeLE = void 0; |
|
exports.mod = mod; |
|
exports.pow = pow; |
|
exports.pow2 = pow2; |
|
exports.invert = invert; |
|
exports.tonelliShanks = tonelliShanks; |
|
exports.FpSqrt = FpSqrt; |
|
exports.validateField = validateField; |
|
exports.FpPow = FpPow; |
|
exports.FpInvertBatch = FpInvertBatch; |
|
exports.FpDiv = FpDiv; |
|
exports.FpLegendre = FpLegendre; |
|
exports.FpIsSquare = FpIsSquare; |
|
exports.nLength = nLength; |
|
exports.Field = Field; |
|
exports.FpSqrtOdd = FpSqrtOdd; |
|
exports.FpSqrtEven = FpSqrtEven; |
|
exports.hashToPrivateScalar = hashToPrivateScalar; |
|
exports.getFieldBytesLength = getFieldBytesLength; |
|
exports.getMinHashLength = getMinHashLength; |
|
exports.mapHashToField = mapHashToField; |
|
/** |
|
* Utils for modular division and fields. |
|
* Field over 11 is a finite (Galois) field is integer number operations `mod 11`. |
|
* There is no division: it is replaced by modular multiplicative inverse. |
|
* @module |
|
*/ |
|
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */ |
|
const utils_ts_1 = require("../utils.js"); |
|
// prettier-ignore |
|
const _0n = BigInt(0), _1n = BigInt(1), _2n = /* @__PURE__ */ BigInt(2), _3n = /* @__PURE__ */ BigInt(3); |
|
// prettier-ignore |
|
const _4n = /* @__PURE__ */ BigInt(4), _5n = /* @__PURE__ */ BigInt(5), _7n = /* @__PURE__ */ BigInt(7); |
|
// prettier-ignore |
|
const _8n = /* @__PURE__ */ BigInt(8), _9n = /* @__PURE__ */ BigInt(9), _16n = /* @__PURE__ */ BigInt(16); |
|
// Calculates a modulo b |
|
function mod(a, b) { |
|
const result = a % b; |
|
return result >= _0n ? result : b + result; |
|
} |
|
/** |
|
* Efficiently raise num to power and do modular division. |
|
* Unsafe in some contexts: uses ladder, so can expose bigint bits. |
|
* @example |
|
* pow(2n, 6n, 11n) // 64n % 11n == 9n |
|
*/ |
|
function pow(num, power, modulo) { |
|
return FpPow(Field(modulo), num, power); |
|
} |
|
/** Does `x^(2^power)` mod p. `pow2(30, 4)` == `30^(2^4)` */ |
|
function pow2(x, power, modulo) { |
|
let res = x; |
|
while (power-- > _0n) { |
|
res *= res; |
|
res %= modulo; |
|
} |
|
return res; |
|
} |
|
/** |
|
* Inverses number over modulo. |
|
* Implemented using [Euclidean GCD](https://brilliant.org/wiki/extended-euclidean-algorithm/). |
|
*/ |
|
function invert(number, modulo) { |
|
if (number === _0n) |
|
throw new Error('invert: expected non-zero number'); |
|
if (modulo <= _0n) |
|
throw new Error('invert: expected positive modulus, got ' + modulo); |
|
// Fermat's little theorem "CT-like" version inv(n) = n^(m-2) mod m is 30x slower. |
|
let a = mod(number, modulo); |
|
let b = modulo; |
|
// prettier-ignore |
|
let x = _0n, y = _1n, u = _1n, v = _0n; |
|
while (a !== _0n) { |
|
// JIT applies optimization if those two lines follow each other |
|
const q = b / a; |
|
const r = b % a; |
|
const m = x - u * q; |
|
const n = y - v * q; |
|
// prettier-ignore |
|
b = a, a = r, x = u, y = v, u = m, v = n; |
|
} |
|
const gcd = b; |
|
if (gcd !== _1n) |
|
throw new Error('invert: does not exist'); |
|
return mod(x, modulo); |
|
} |
|
function assertIsSquare(Fp, root, n) { |
|
if (!Fp.eql(Fp.sqr(root), n)) |
|
throw new Error('Cannot find square root'); |
|
} |
|
// Not all roots are possible! Example which will throw: |
|
// const NUM = |
|
// n = 72057594037927816n; |
|
// Fp = Field(BigInt('0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab')); |
|
function sqrt3mod4(Fp, n) { |
|
const p1div4 = (Fp.ORDER + _1n) / _4n; |
|
const root = Fp.pow(n, p1div4); |
|
assertIsSquare(Fp, root, n); |
|
return root; |
|
} |
|
function sqrt5mod8(Fp, n) { |
|
const p5div8 = (Fp.ORDER - _5n) / _8n; |
|
const n2 = Fp.mul(n, _2n); |
|
const v = Fp.pow(n2, p5div8); |
|
const nv = Fp.mul(n, v); |
|
const i = Fp.mul(Fp.mul(nv, _2n), v); |
|
const root = Fp.mul(nv, Fp.sub(i, Fp.ONE)); |
|
assertIsSquare(Fp, root, n); |
|
return root; |
|
} |
|
// Based on RFC9380, Kong algorithm |
|
// prettier-ignore |
|
function sqrt9mod16(P) { |
|
const Fp_ = Field(P); |
|
const tn = tonelliShanks(P); |
|
const c1 = tn(Fp_, Fp_.neg(Fp_.ONE)); // 1. c1 = sqrt(-1) in F, i.e., (c1^2) == -1 in F |
|
const c2 = tn(Fp_, c1); // 2. c2 = sqrt(c1) in F, i.e., (c2^2) == c1 in F |
|
const c3 = tn(Fp_, Fp_.neg(c1)); // 3. c3 = sqrt(-c1) in F, i.e., (c3^2) == -c1 in F |
|
const c4 = (P + _7n) / _16n; // 4. c4 = (q + 7) / 16 # Integer arithmetic |
|
return (Fp, n) => { |
|
let tv1 = Fp.pow(n, c4); // 1. tv1 = x^c4 |
|
let tv2 = Fp.mul(tv1, c1); // 2. tv2 = c1 * tv1 |
|
const tv3 = Fp.mul(tv1, c2); // 3. tv3 = c2 * tv1 |
|
const tv4 = Fp.mul(tv1, c3); // 4. tv4 = c3 * tv1 |
|
const e1 = Fp.eql(Fp.sqr(tv2), n); // 5. e1 = (tv2^2) == x |
|
const e2 = Fp.eql(Fp.sqr(tv3), n); // 6. e2 = (tv3^2) == x |
|
tv1 = Fp.cmov(tv1, tv2, e1); // 7. tv1 = CMOV(tv1, tv2, e1) # Select tv2 if (tv2^2) == x |
|
tv2 = Fp.cmov(tv4, tv3, e2); // 8. tv2 = CMOV(tv4, tv3, e2) # Select tv3 if (tv3^2) == x |
|
const e3 = Fp.eql(Fp.sqr(tv2), n); // 9. e3 = (tv2^2) == x |
|
const root = Fp.cmov(tv1, tv2, e3); // 10. z = CMOV(tv1, tv2, e3) # Select sqrt from tv1 & tv2 |
|
assertIsSquare(Fp, root, n); |
|
return root; |
|
}; |
|
} |
|
/** |
|
* Tonelli-Shanks square root search algorithm. |
|
* 1. https://eprint.iacr.org/2012/685.pdf (page 12) |
|
* 2. Square Roots from 1; 24, 51, 10 to Dan Shanks |
|
* @param P field order |
|
* @returns function that takes field Fp (created from P) and number n |
|
*/ |
|
function tonelliShanks(P) { |
|
// Initialization (precomputation). |
|
// Caching initialization could boost perf by 7%. |
|
if (P < _3n) |
|
throw new Error('sqrt is not defined for small field'); |
|
// Factor P - 1 = Q * 2^S, where Q is odd |
|
let Q = P - _1n; |
|
let S = 0; |
|
while (Q % _2n === _0n) { |
|
Q /= _2n; |
|
S++; |
|
} |
|
// Find the first quadratic non-residue Z >= 2 |
|
let Z = _2n; |
|
const _Fp = Field(P); |
|
while (FpLegendre(_Fp, Z) === 1) { |
|
// Basic primality test for P. After x iterations, chance of |
|
// not finding quadratic non-residue is 2^x, so 2^1000. |
|
if (Z++ > 1000) |
|
throw new Error('Cannot find square root: probably non-prime P'); |
|
} |
|
// Fast-path; usually done before Z, but we do "primality test". |
|
if (S === 1) |
|
return sqrt3mod4; |
|
// Slow-path |
|
// TODO: test on Fp2 and others |
|
let cc = _Fp.pow(Z, Q); // c = z^Q |
|
const Q1div2 = (Q + _1n) / _2n; |
|
return function tonelliSlow(Fp, n) { |
|
if (Fp.is0(n)) |
|
return n; |
|
// Check if n is a quadratic residue using Legendre symbol |
|
if (FpLegendre(Fp, n) !== 1) |
|
throw new Error('Cannot find square root'); |
|
// Initialize variables for the main loop |
|
let M = S; |
|
let c = Fp.mul(Fp.ONE, cc); // c = z^Q, move cc from field _Fp into field Fp |
|
let t = Fp.pow(n, Q); // t = n^Q, first guess at the fudge factor |
|
let R = Fp.pow(n, Q1div2); // R = n^((Q+1)/2), first guess at the square root |
|
// Main loop |
|
// while t != 1 |
|
while (!Fp.eql(t, Fp.ONE)) { |
|
if (Fp.is0(t)) |
|
return Fp.ZERO; // if t=0 return R=0 |
|
let i = 1; |
|
// Find the smallest i >= 1 such that t^(2^i) ≡ 1 (mod P) |
|
let t_tmp = Fp.sqr(t); // t^(2^1) |
|
while (!Fp.eql(t_tmp, Fp.ONE)) { |
|
i++; |
|
t_tmp = Fp.sqr(t_tmp); // t^(2^2)... |
|
if (i === M) |
|
throw new Error('Cannot find square root'); |
|
} |
|
// Calculate the exponent for b: 2^(M - i - 1) |
|
const exponent = _1n << BigInt(M - i - 1); // bigint is important |
|
const b = Fp.pow(c, exponent); // b = 2^(M - i - 1) |
|
// Update variables |
|
M = i; |
|
c = Fp.sqr(b); // c = b^2 |
|
t = Fp.mul(t, c); // t = (t * b^2) |
|
R = Fp.mul(R, b); // R = R*b |
|
} |
|
return R; |
|
}; |
|
} |
|
/** |
|
* Square root for a finite field. Will try optimized versions first: |
|
* |
|
* 1. P ≡ 3 (mod 4) |
|
* 2. P ≡ 5 (mod 8) |
|
* 3. P ≡ 9 (mod 16) |
|
* 4. Tonelli-Shanks algorithm |
|
* |
|
* Different algorithms can give different roots, it is up to user to decide which one they want. |
|
* For example there is FpSqrtOdd/FpSqrtEven to choice root based on oddness (used for hash-to-curve). |
|
*/ |
|
function FpSqrt(P) { |
|
// P ≡ 3 (mod 4) => √n = n^((P+1)/4) |
|
if (P % _4n === _3n) |
|
return sqrt3mod4; |
|
// P ≡ 5 (mod 8) => Atkin algorithm, page 10 of https://eprint.iacr.org/2012/685.pdf |
|
if (P % _8n === _5n) |
|
return sqrt5mod8; |
|
// P ≡ 9 (mod 16) => Kong algorithm, page 11 of https://eprint.iacr.org/2012/685.pdf (algorithm 4) |
|
if (P % _16n === _9n) |
|
return sqrt9mod16(P); |
|
// Tonelli-Shanks algorithm |
|
return tonelliShanks(P); |
|
} |
|
// Little-endian check for first LE bit (last BE bit); |
|
const isNegativeLE = (num, modulo) => (mod(num, modulo) & _1n) === _1n; |
|
exports.isNegativeLE = isNegativeLE; |
|
// prettier-ignore |
|
const FIELD_FIELDS = [ |
|
'create', 'isValid', 'is0', 'neg', 'inv', 'sqrt', 'sqr', |
|
'eql', 'add', 'sub', 'mul', 'pow', 'div', |
|
'addN', 'subN', 'mulN', 'sqrN' |
|
]; |
|
function validateField(field) { |
|
const initial = { |
|
ORDER: 'bigint', |
|
MASK: 'bigint', |
|
BYTES: 'number', |
|
BITS: 'number', |
|
}; |
|
const opts = FIELD_FIELDS.reduce((map, val) => { |
|
map[val] = 'function'; |
|
return map; |
|
}, initial); |
|
(0, utils_ts_1._validateObject)(field, opts); |
|
// const max = 16384; |
|
// if (field.BYTES < 1 || field.BYTES > max) throw new Error('invalid field'); |
|
// if (field.BITS < 1 || field.BITS > 8 * max) throw new Error('invalid field'); |
|
return field; |
|
} |
|
// Generic field functions |
|
/** |
|
* Same as `pow` but for Fp: non-constant-time. |
|
* Unsafe in some contexts: uses ladder, so can expose bigint bits. |
|
*/ |
|
function FpPow(Fp, num, power) { |
|
if (power < _0n) |
|
throw new Error('invalid exponent, negatives unsupported'); |
|
if (power === _0n) |
|
return Fp.ONE; |
|
if (power === _1n) |
|
return num; |
|
let p = Fp.ONE; |
|
let d = num; |
|
while (power > _0n) { |
|
if (power & _1n) |
|
p = Fp.mul(p, d); |
|
d = Fp.sqr(d); |
|
power >>= _1n; |
|
} |
|
return p; |
|
} |
|
/** |
|
* Efficiently invert an array of Field elements. |
|
* Exception-free. Will return `undefined` for 0 elements. |
|
* @param passZero map 0 to 0 (instead of undefined) |
|
*/ |
|
function FpInvertBatch(Fp, nums, passZero = false) { |
|
const inverted = new Array(nums.length).fill(passZero ? Fp.ZERO : undefined); |
|
// Walk from first to last, multiply them by each other MOD p |
|
const multipliedAcc = nums.reduce((acc, num, i) => { |
|
if (Fp.is0(num)) |
|
return acc; |
|
inverted[i] = acc; |
|
return Fp.mul(acc, num); |
|
}, Fp.ONE); |
|
// Invert last element |
|
const invertedAcc = Fp.inv(multipliedAcc); |
|
// Walk from last to first, multiply them by inverted each other MOD p |
|
nums.reduceRight((acc, num, i) => { |
|
if (Fp.is0(num)) |
|
return acc; |
|
inverted[i] = Fp.mul(acc, inverted[i]); |
|
return Fp.mul(acc, num); |
|
}, invertedAcc); |
|
return inverted; |
|
} |
|
// TODO: remove |
|
function FpDiv(Fp, lhs, rhs) { |
|
return Fp.mul(lhs, typeof rhs === 'bigint' ? invert(rhs, Fp.ORDER) : Fp.inv(rhs)); |
|
} |
|
/** |
|
* Legendre symbol. |
|
* Legendre constant is used to calculate Legendre symbol (a | p) |
|
* which denotes the value of a^((p-1)/2) (mod p). |
|
* |
|
* * (a | p) ≡ 1 if a is a square (mod p), quadratic residue |
|
* * (a | p) ≡ -1 if a is not a square (mod p), quadratic non residue |
|
* * (a | p) ≡ 0 if a ≡ 0 (mod p) |
|
*/ |
|
function FpLegendre(Fp, n) { |
|
// We can use 3rd argument as optional cache of this value |
|
// but seems unneeded for now. The operation is very fast. |
|
const p1mod2 = (Fp.ORDER - _1n) / _2n; |
|
const powered = Fp.pow(n, p1mod2); |
|
const yes = Fp.eql(powered, Fp.ONE); |
|
const zero = Fp.eql(powered, Fp.ZERO); |
|
const no = Fp.eql(powered, Fp.neg(Fp.ONE)); |
|
if (!yes && !zero && !no) |
|
throw new Error('invalid Legendre symbol result'); |
|
return yes ? 1 : zero ? 0 : -1; |
|
} |
|
// This function returns True whenever the value x is a square in the field F. |
|
function FpIsSquare(Fp, n) { |
|
const l = FpLegendre(Fp, n); |
|
return l === 1; |
|
} |
|
// CURVE.n lengths |
|
function nLength(n, nBitLength) { |
|
// Bit size, byte size of CURVE.n |
|
if (nBitLength !== undefined) |
|
(0, utils_ts_1.anumber)(nBitLength); |
|
const _nBitLength = nBitLength !== undefined ? nBitLength : n.toString(2).length; |
|
const nByteLength = Math.ceil(_nBitLength / 8); |
|
return { nBitLength: _nBitLength, nByteLength }; |
|
} |
|
/** |
|
* Creates a finite field. Major performance optimizations: |
|
* * 1. Denormalized operations like mulN instead of mul. |
|
* * 2. Identical object shape: never add or remove keys. |
|
* * 3. `Object.freeze`. |
|
* Fragile: always run a benchmark on a change. |
|
* Security note: operations don't check 'isValid' for all elements for performance reasons, |
|
* it is caller responsibility to check this. |
|
* This is low-level code, please make sure you know what you're doing. |
|
* |
|
* Note about field properties: |
|
* * CHARACTERISTIC p = prime number, number of elements in main subgroup. |
|
* * ORDER q = similar to cofactor in curves, may be composite `q = p^m`. |
|
* |
|
* @param ORDER field order, probably prime, or could be composite |
|
* @param bitLen how many bits the field consumes |
|
* @param isLE (default: false) if encoding / decoding should be in little-endian |
|
* @param redef optional faster redefinitions of sqrt and other methods |
|
*/ |
|
function Field(ORDER, bitLenOrOpts, // TODO: use opts only in v2? |
|
isLE = false, opts = {}) { |
|
if (ORDER <= _0n) |
|
throw new Error('invalid field: expected ORDER > 0, got ' + ORDER); |
|
let _nbitLength = undefined; |
|
let _sqrt = undefined; |
|
let modFromBytes = false; |
|
let allowedLengths = undefined; |
|
if (typeof bitLenOrOpts === 'object' && bitLenOrOpts != null) { |
|
if (opts.sqrt || isLE) |
|
throw new Error('cannot specify opts in two arguments'); |
|
const _opts = bitLenOrOpts; |
|
if (_opts.BITS) |
|
_nbitLength = _opts.BITS; |
|
if (_opts.sqrt) |
|
_sqrt = _opts.sqrt; |
|
if (typeof _opts.isLE === 'boolean') |
|
isLE = _opts.isLE; |
|
if (typeof _opts.modFromBytes === 'boolean') |
|
modFromBytes = _opts.modFromBytes; |
|
allowedLengths = _opts.allowedLengths; |
|
} |
|
else { |
|
if (typeof bitLenOrOpts === 'number') |
|
_nbitLength = bitLenOrOpts; |
|
if (opts.sqrt) |
|
_sqrt = opts.sqrt; |
|
} |
|
const { nBitLength: BITS, nByteLength: BYTES } = nLength(ORDER, _nbitLength); |
|
if (BYTES > 2048) |
|
throw new Error('invalid field: expected ORDER of <= 2048 bytes'); |
|
let sqrtP; // cached sqrtP |
|
const f = Object.freeze({ |
|
ORDER, |
|
isLE, |
|
BITS, |
|
BYTES, |
|
MASK: (0, utils_ts_1.bitMask)(BITS), |
|
ZERO: _0n, |
|
ONE: _1n, |
|
allowedLengths: allowedLengths, |
|
create: (num) => mod(num, ORDER), |
|
isValid: (num) => { |
|
if (typeof num !== 'bigint') |
|
throw new Error('invalid field element: expected bigint, got ' + typeof num); |
|
return _0n <= num && num < ORDER; // 0 is valid element, but it's not invertible |
|
}, |
|
is0: (num) => num === _0n, |
|
// is valid and invertible |
|
isValidNot0: (num) => !f.is0(num) && f.isValid(num), |
|
isOdd: (num) => (num & _1n) === _1n, |
|
neg: (num) => mod(-num, ORDER), |
|
eql: (lhs, rhs) => lhs === rhs, |
|
sqr: (num) => mod(num * num, ORDER), |
|
add: (lhs, rhs) => mod(lhs + rhs, ORDER), |
|
sub: (lhs, rhs) => mod(lhs - rhs, ORDER), |
|
mul: (lhs, rhs) => mod(lhs * rhs, ORDER), |
|
pow: (num, power) => FpPow(f, num, power), |
|
div: (lhs, rhs) => mod(lhs * invert(rhs, ORDER), ORDER), |
|
// Same as above, but doesn't normalize |
|
sqrN: (num) => num * num, |
|
addN: (lhs, rhs) => lhs + rhs, |
|
subN: (lhs, rhs) => lhs - rhs, |
|
mulN: (lhs, rhs) => lhs * rhs, |
|
inv: (num) => invert(num, ORDER), |
|
sqrt: _sqrt || |
|
((n) => { |
|
if (!sqrtP) |
|
sqrtP = FpSqrt(ORDER); |
|
return sqrtP(f, n); |
|
}), |
|
toBytes: (num) => (isLE ? (0, utils_ts_1.numberToBytesLE)(num, BYTES) : (0, utils_ts_1.numberToBytesBE)(num, BYTES)), |
|
fromBytes: (bytes, skipValidation = true) => { |
|
if (allowedLengths) { |
|
if (!allowedLengths.includes(bytes.length) || bytes.length > BYTES) { |
|
throw new Error('Field.fromBytes: expected ' + allowedLengths + ' bytes, got ' + bytes.length); |
|
} |
|
const padded = new Uint8Array(BYTES); |
|
// isLE add 0 to right, !isLE to the left. |
|
padded.set(bytes, isLE ? 0 : padded.length - bytes.length); |
|
bytes = padded; |
|
} |
|
if (bytes.length !== BYTES) |
|
throw new Error('Field.fromBytes: expected ' + BYTES + ' bytes, got ' + bytes.length); |
|
let scalar = isLE ? (0, utils_ts_1.bytesToNumberLE)(bytes) : (0, utils_ts_1.bytesToNumberBE)(bytes); |
|
if (modFromBytes) |
|
scalar = mod(scalar, ORDER); |
|
if (!skipValidation) |
|
if (!f.isValid(scalar)) |
|
throw new Error('invalid field element: outside of range 0..ORDER'); |
|
// NOTE: we don't validate scalar here, please use isValid. This done such way because some |
|
// protocol may allow non-reduced scalar that reduced later or changed some other way. |
|
return scalar; |
|
}, |
|
// TODO: we don't need it here, move out to separate fn |
|
invertBatch: (lst) => FpInvertBatch(f, lst), |
|
// We can't move this out because Fp6, Fp12 implement it |
|
// and it's unclear what to return in there. |
|
cmov: (a, b, c) => (c ? b : a), |
|
}); |
|
return Object.freeze(f); |
|
} |
|
// Generic random scalar, we can do same for other fields if via Fp2.mul(Fp2.ONE, Fp2.random)? |
|
// This allows unsafe methods like ignore bias or zero. These unsafe, but often used in different protocols (if deterministic RNG). |
|
// which mean we cannot force this via opts. |
|
// Not sure what to do with randomBytes, we can accept it inside opts if wanted. |
|
// Probably need to export getMinHashLength somewhere? |
|
// random(bytes?: Uint8Array, unsafeAllowZero = false, unsafeAllowBias = false) { |
|
// const LEN = !unsafeAllowBias ? getMinHashLength(ORDER) : BYTES; |
|
// if (bytes === undefined) bytes = randomBytes(LEN); // _opts.randomBytes? |
|
// const num = isLE ? bytesToNumberLE(bytes) : bytesToNumberBE(bytes); |
|
// // `mod(x, 11)` can sometimes produce 0. `mod(x, 10) + 1` is the same, but no 0 |
|
// const reduced = unsafeAllowZero ? mod(num, ORDER) : mod(num, ORDER - _1n) + _1n; |
|
// return reduced; |
|
// }, |
|
function FpSqrtOdd(Fp, elm) { |
|
if (!Fp.isOdd) |
|
throw new Error("Field doesn't have isOdd"); |
|
const root = Fp.sqrt(elm); |
|
return Fp.isOdd(root) ? root : Fp.neg(root); |
|
} |
|
function FpSqrtEven(Fp, elm) { |
|
if (!Fp.isOdd) |
|
throw new Error("Field doesn't have isOdd"); |
|
const root = Fp.sqrt(elm); |
|
return Fp.isOdd(root) ? Fp.neg(root) : root; |
|
} |
|
/** |
|
* "Constant-time" private key generation utility. |
|
* Same as mapKeyToField, but accepts less bytes (40 instead of 48 for 32-byte field). |
|
* Which makes it slightly more biased, less secure. |
|
* @deprecated use `mapKeyToField` instead |
|
*/ |
|
function hashToPrivateScalar(hash, groupOrder, isLE = false) { |
|
hash = (0, utils_ts_1.ensureBytes)('privateHash', hash); |
|
const hashLen = hash.length; |
|
const minLen = nLength(groupOrder).nByteLength + 8; |
|
if (minLen < 24 || hashLen < minLen || hashLen > 1024) |
|
throw new Error('hashToPrivateScalar: expected ' + minLen + '-1024 bytes of input, got ' + hashLen); |
|
const num = isLE ? (0, utils_ts_1.bytesToNumberLE)(hash) : (0, utils_ts_1.bytesToNumberBE)(hash); |
|
return mod(num, groupOrder - _1n) + _1n; |
|
} |
|
/** |
|
* Returns total number of bytes consumed by the field element. |
|
* For example, 32 bytes for usual 256-bit weierstrass curve. |
|
* @param fieldOrder number of field elements, usually CURVE.n |
|
* @returns byte length of field |
|
*/ |
|
function getFieldBytesLength(fieldOrder) { |
|
if (typeof fieldOrder !== 'bigint') |
|
throw new Error('field order must be bigint'); |
|
const bitLength = fieldOrder.toString(2).length; |
|
return Math.ceil(bitLength / 8); |
|
} |
|
/** |
|
* Returns minimal amount of bytes that can be safely reduced |
|
* by field order. |
|
* Should be 2^-128 for 128-bit curve such as P256. |
|
* @param fieldOrder number of field elements, usually CURVE.n |
|
* @returns byte length of target hash |
|
*/ |
|
function getMinHashLength(fieldOrder) { |
|
const length = getFieldBytesLength(fieldOrder); |
|
return length + Math.ceil(length / 2); |
|
} |
|
/** |
|
* "Constant-time" private key generation utility. |
|
* Can take (n + n/2) or more bytes of uniform input e.g. from CSPRNG or KDF |
|
* and convert them into private scalar, with the modulo bias being negligible. |
|
* Needs at least 48 bytes of input for 32-byte private key. |
|
* https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/ |
|
* FIPS 186-5, A.2 https://csrc.nist.gov/publications/detail/fips/186/5/final |
|
* RFC 9380, https://www.rfc-editor.org/rfc/rfc9380#section-5 |
|
* @param hash hash output from SHA3 or a similar function |
|
* @param groupOrder size of subgroup - (e.g. secp256k1.CURVE.n) |
|
* @param isLE interpret hash bytes as LE num |
|
* @returns valid private scalar |
|
*/ |
|
function mapHashToField(key, fieldOrder, isLE = false) { |
|
const len = key.length; |
|
const fieldLen = getFieldBytesLength(fieldOrder); |
|
const minLen = getMinHashLength(fieldOrder); |
|
// No small numbers: need to understand bias story. No huge numbers: easier to detect JS timings. |
|
if (len < 16 || len < minLen || len > 1024) |
|
throw new Error('expected ' + minLen + '-1024 bytes of input, got ' + len); |
|
const num = isLE ? (0, utils_ts_1.bytesToNumberLE)(key) : (0, utils_ts_1.bytesToNumberBE)(key); |
|
// `mod(x, 11)` can sometimes produce 0. `mod(x, 10) + 1` is the same, but no 0 |
|
const reduced = mod(num, fieldOrder - _1n) + _1n; |
|
return isLE ? (0, utils_ts_1.numberToBytesLE)(reduced, fieldLen) : (0, utils_ts_1.numberToBytesBE)(reduced, fieldLen); |
|
} |
|
//# sourceMappingURL=modular.js.map
|