You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
171 lines
6.9 KiB
171 lines
6.9 KiB
export declare function mod(a: bigint, b: bigint): bigint; |
|
/** |
|
* Efficiently raise num to power and do modular division. |
|
* Unsafe in some contexts: uses ladder, so can expose bigint bits. |
|
* @example |
|
* pow(2n, 6n, 11n) // 64n % 11n == 9n |
|
*/ |
|
export declare function pow(num: bigint, power: bigint, modulo: bigint): bigint; |
|
/** Does `x^(2^power)` mod p. `pow2(30, 4)` == `30^(2^4)` */ |
|
export declare function pow2(x: bigint, power: bigint, modulo: bigint): bigint; |
|
/** |
|
* Inverses number over modulo. |
|
* Implemented using [Euclidean GCD](https://brilliant.org/wiki/extended-euclidean-algorithm/). |
|
*/ |
|
export declare function invert(number: bigint, modulo: bigint): bigint; |
|
/** |
|
* Tonelli-Shanks square root search algorithm. |
|
* 1. https://eprint.iacr.org/2012/685.pdf (page 12) |
|
* 2. Square Roots from 1; 24, 51, 10 to Dan Shanks |
|
* @param P field order |
|
* @returns function that takes field Fp (created from P) and number n |
|
*/ |
|
export declare function tonelliShanks(P: bigint): <T>(Fp: IField<T>, n: T) => T; |
|
/** |
|
* Square root for a finite field. Will try optimized versions first: |
|
* |
|
* 1. P ≡ 3 (mod 4) |
|
* 2. P ≡ 5 (mod 8) |
|
* 3. P ≡ 9 (mod 16) |
|
* 4. Tonelli-Shanks algorithm |
|
* |
|
* Different algorithms can give different roots, it is up to user to decide which one they want. |
|
* For example there is FpSqrtOdd/FpSqrtEven to choice root based on oddness (used for hash-to-curve). |
|
*/ |
|
export declare function FpSqrt(P: bigint): <T>(Fp: IField<T>, n: T) => T; |
|
export declare const isNegativeLE: (num: bigint, modulo: bigint) => boolean; |
|
/** Field is not always over prime: for example, Fp2 has ORDER(q)=p^m. */ |
|
export interface IField<T> { |
|
ORDER: bigint; |
|
isLE: boolean; |
|
BYTES: number; |
|
BITS: number; |
|
MASK: bigint; |
|
ZERO: T; |
|
ONE: T; |
|
create: (num: T) => T; |
|
isValid: (num: T) => boolean; |
|
is0: (num: T) => boolean; |
|
isValidNot0: (num: T) => boolean; |
|
neg(num: T): T; |
|
inv(num: T): T; |
|
sqrt(num: T): T; |
|
sqr(num: T): T; |
|
eql(lhs: T, rhs: T): boolean; |
|
add(lhs: T, rhs: T): T; |
|
sub(lhs: T, rhs: T): T; |
|
mul(lhs: T, rhs: T | bigint): T; |
|
pow(lhs: T, power: bigint): T; |
|
div(lhs: T, rhs: T | bigint): T; |
|
addN(lhs: T, rhs: T): T; |
|
subN(lhs: T, rhs: T): T; |
|
mulN(lhs: T, rhs: T | bigint): T; |
|
sqrN(num: T): T; |
|
isOdd?(num: T): boolean; |
|
allowedLengths?: number[]; |
|
invertBatch: (lst: T[]) => T[]; |
|
toBytes(num: T): Uint8Array; |
|
fromBytes(bytes: Uint8Array, skipValidation?: boolean): T; |
|
cmov(a: T, b: T, c: boolean): T; |
|
} |
|
export declare function validateField<T>(field: IField<T>): IField<T>; |
|
/** |
|
* Same as `pow` but for Fp: non-constant-time. |
|
* Unsafe in some contexts: uses ladder, so can expose bigint bits. |
|
*/ |
|
export declare function FpPow<T>(Fp: IField<T>, num: T, power: bigint): T; |
|
/** |
|
* Efficiently invert an array of Field elements. |
|
* Exception-free. Will return `undefined` for 0 elements. |
|
* @param passZero map 0 to 0 (instead of undefined) |
|
*/ |
|
export declare function FpInvertBatch<T>(Fp: IField<T>, nums: T[], passZero?: boolean): T[]; |
|
export declare function FpDiv<T>(Fp: IField<T>, lhs: T, rhs: T | bigint): T; |
|
/** |
|
* Legendre symbol. |
|
* Legendre constant is used to calculate Legendre symbol (a | p) |
|
* which denotes the value of a^((p-1)/2) (mod p). |
|
* |
|
* * (a | p) ≡ 1 if a is a square (mod p), quadratic residue |
|
* * (a | p) ≡ -1 if a is not a square (mod p), quadratic non residue |
|
* * (a | p) ≡ 0 if a ≡ 0 (mod p) |
|
*/ |
|
export declare function FpLegendre<T>(Fp: IField<T>, n: T): -1 | 0 | 1; |
|
export declare function FpIsSquare<T>(Fp: IField<T>, n: T): boolean; |
|
export type NLength = { |
|
nByteLength: number; |
|
nBitLength: number; |
|
}; |
|
export declare function nLength(n: bigint, nBitLength?: number): NLength; |
|
type FpField = IField<bigint> & Required<Pick<IField<bigint>, 'isOdd'>>; |
|
type SqrtFn = (n: bigint) => bigint; |
|
type FieldOpts = Partial<{ |
|
sqrt: SqrtFn; |
|
isLE: boolean; |
|
BITS: number; |
|
modFromBytes: boolean; |
|
allowedLengths?: readonly number[]; |
|
}>; |
|
/** |
|
* Creates a finite field. Major performance optimizations: |
|
* * 1. Denormalized operations like mulN instead of mul. |
|
* * 2. Identical object shape: never add or remove keys. |
|
* * 3. `Object.freeze`. |
|
* Fragile: always run a benchmark on a change. |
|
* Security note: operations don't check 'isValid' for all elements for performance reasons, |
|
* it is caller responsibility to check this. |
|
* This is low-level code, please make sure you know what you're doing. |
|
* |
|
* Note about field properties: |
|
* * CHARACTERISTIC p = prime number, number of elements in main subgroup. |
|
* * ORDER q = similar to cofactor in curves, may be composite `q = p^m`. |
|
* |
|
* @param ORDER field order, probably prime, or could be composite |
|
* @param bitLen how many bits the field consumes |
|
* @param isLE (default: false) if encoding / decoding should be in little-endian |
|
* @param redef optional faster redefinitions of sqrt and other methods |
|
*/ |
|
export declare function Field(ORDER: bigint, bitLenOrOpts?: number | FieldOpts, // TODO: use opts only in v2? |
|
isLE?: boolean, opts?: { |
|
sqrt?: SqrtFn; |
|
}): Readonly<FpField>; |
|
export declare function FpSqrtOdd<T>(Fp: IField<T>, elm: T): T; |
|
export declare function FpSqrtEven<T>(Fp: IField<T>, elm: T): T; |
|
/** |
|
* "Constant-time" private key generation utility. |
|
* Same as mapKeyToField, but accepts less bytes (40 instead of 48 for 32-byte field). |
|
* Which makes it slightly more biased, less secure. |
|
* @deprecated use `mapKeyToField` instead |
|
*/ |
|
export declare function hashToPrivateScalar(hash: string | Uint8Array, groupOrder: bigint, isLE?: boolean): bigint; |
|
/** |
|
* Returns total number of bytes consumed by the field element. |
|
* For example, 32 bytes for usual 256-bit weierstrass curve. |
|
* @param fieldOrder number of field elements, usually CURVE.n |
|
* @returns byte length of field |
|
*/ |
|
export declare function getFieldBytesLength(fieldOrder: bigint): number; |
|
/** |
|
* Returns minimal amount of bytes that can be safely reduced |
|
* by field order. |
|
* Should be 2^-128 for 128-bit curve such as P256. |
|
* @param fieldOrder number of field elements, usually CURVE.n |
|
* @returns byte length of target hash |
|
*/ |
|
export declare function getMinHashLength(fieldOrder: bigint): number; |
|
/** |
|
* "Constant-time" private key generation utility. |
|
* Can take (n + n/2) or more bytes of uniform input e.g. from CSPRNG or KDF |
|
* and convert them into private scalar, with the modulo bias being negligible. |
|
* Needs at least 48 bytes of input for 32-byte private key. |
|
* https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/ |
|
* FIPS 186-5, A.2 https://csrc.nist.gov/publications/detail/fips/186/5/final |
|
* RFC 9380, https://www.rfc-editor.org/rfc/rfc9380#section-5 |
|
* @param hash hash output from SHA3 or a similar function |
|
* @param groupOrder size of subgroup - (e.g. secp256k1.CURVE.n) |
|
* @param isLE interpret hash bytes as LE num |
|
* @returns valid private scalar |
|
*/ |
|
export declare function mapHashToField(key: Uint8Array, fieldOrder: bigint, isLE?: boolean): Uint8Array; |
|
export {}; |
|
//# sourceMappingURL=modular.d.ts.map
|