|
|
"use strict"; |
|
|
Object.defineProperty(exports, "__esModule", { value: true }); |
|
|
exports.BinaryFF1 = exports.FF1 = void 0; |
|
|
const utils_js_1 = require("./utils.js"); |
|
|
const aes_js_1 = require("./aes.js"); |
|
|
// NOTE: no point in inlining encrypt instead of encryptBlock, since BigInt stuff will be slow |
|
|
const { expandKeyLE, encryptBlock } = aes_js_1.unsafe; |
|
|
// Format-preserving encryption algorithm (FPE-FF1) specified in NIST Special Publication 800-38G. |
|
|
// https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38G.pdf |
|
|
const BLOCK_LEN = 16; |
|
|
function mod(a, b) { |
|
|
const result = a % b; |
|
|
return result >= 0 ? result : b + result; |
|
|
} |
|
|
function NUMradix(radix, data) { |
|
|
let res = BigInt(0); |
|
|
for (let i of data) |
|
|
res = res * BigInt(radix) + BigInt(i); |
|
|
return res; |
|
|
} |
|
|
function getRound(radix, key, tweak, x) { |
|
|
if (radix > 2 ** 16 - 1) |
|
|
throw new Error(`Invalid radix: ${radix}`); |
|
|
// radix**minlen ≥ 100 |
|
|
const minLen = Math.ceil(Math.log(100) / Math.log(radix)); |
|
|
const maxLen = 2 ** 32 - 1; |
|
|
// 2 ≤ minlen ≤ maxlen < 2**32 |
|
|
if (2 > minLen || minLen > maxLen || maxLen >= 2 ** 32) |
|
|
throw new Error('Invalid radix: 2 ≤ minlen ≤ maxlen < 2**32'); |
|
|
if (x.length < minLen || x.length > maxLen) |
|
|
throw new Error('X is outside minLen..maxLen bounds'); |
|
|
const u = Math.floor(x.length / 2); |
|
|
const v = x.length - u; |
|
|
const b = Math.ceil(Math.ceil(v * Math.log2(radix)) / 8); |
|
|
const d = 4 * Math.ceil(b / 4) + 4; |
|
|
const padding = mod(-tweak.length - b - 1, 16); |
|
|
// P = [1]1 || [2]1 || [1]1 || [radix]3 || [10]1 || [u mod 256]1 || [n]4 || [t]4. |
|
|
const P = new Uint8Array([1, 2, 1, 0, 0, 0, 10, u, 0, 0, 0, 0, 0, 0, 0, 0]); |
|
|
const view = new DataView(P.buffer); |
|
|
view.setUint16(4, radix, false); |
|
|
view.setUint32(8, x.length, false); |
|
|
view.setUint32(12, tweak.length, false); |
|
|
// Q = T || [0](−t−b−1) mod 16 || [i]1 || [NUMradix(B)]b. |
|
|
const PQ = new Uint8Array(P.length + tweak.length + padding + 1 + b); |
|
|
PQ.set(P); |
|
|
P.fill(0); |
|
|
PQ.set(tweak, P.length); |
|
|
const xk = expandKeyLE(key); |
|
|
const round = (A, B, i, decrypt = false) => { |
|
|
// Q = ... || [i]1 || [NUMradix(B)]b. |
|
|
PQ[PQ.length - b - 1] = i; |
|
|
if (b) |
|
|
PQ.set((0, utils_js_1.numberToBytesBE)(NUMradix(radix, B), b), PQ.length - b); |
|
|
// PRF |
|
|
let r = new Uint8Array(16); |
|
|
for (let j = 0; j < PQ.length / BLOCK_LEN; j++) { |
|
|
for (let i = 0; i < BLOCK_LEN; i++) |
|
|
r[i] ^= PQ[j * BLOCK_LEN + i]; |
|
|
encryptBlock(xk, r); |
|
|
} |
|
|
// Let S be the first d bytes of the following string of ⎡d/16⎤ blocks: |
|
|
// R || CIPHK(R ⊕[1]16) || CIPHK(R ⊕[2]16) ...CIPHK(R ⊕[⎡d / 16⎤ – 1]16). |
|
|
let s = Array.from(r); |
|
|
for (let j = 1; s.length < d; j++) { |
|
|
const block = (0, utils_js_1.numberToBytesBE)(BigInt(j), 16); |
|
|
for (let k = 0; k < BLOCK_LEN; k++) |
|
|
block[k] ^= r[k]; |
|
|
s.push(...Array.from(encryptBlock(xk, block))); |
|
|
} |
|
|
let y = (0, utils_js_1.bytesToNumberBE)(Uint8Array.from(s.slice(0, d))); |
|
|
s.fill(0); |
|
|
if (decrypt) |
|
|
y = -y; |
|
|
const m = i % 2 === 0 ? u : v; |
|
|
let c = mod(NUMradix(radix, A) + y, BigInt(radix) ** BigInt(m)); |
|
|
// STR(radix, m, c) |
|
|
const C = Array(m).fill(0); |
|
|
for (let i = 0; i < m; i++, c /= BigInt(radix)) |
|
|
C[m - 1 - i] = Number(c % BigInt(radix)); |
|
|
A.fill(0); |
|
|
A = B; |
|
|
B = C; |
|
|
return [A, B]; |
|
|
}; |
|
|
const destroy = () => { |
|
|
xk.fill(0); |
|
|
PQ.fill(0); |
|
|
}; |
|
|
return { u, round, destroy }; |
|
|
} |
|
|
const EMPTY_BUF = new Uint8Array([]); |
|
|
function FF1(radix, key, tweak = EMPTY_BUF) { |
|
|
const PQ = getRound.bind(null, radix, key, tweak); |
|
|
return { |
|
|
encrypt(x) { |
|
|
const { u, round, destroy } = PQ(x); |
|
|
let [A, B] = [x.slice(0, u), x.slice(u)]; |
|
|
for (let i = 0; i < 10; i++) |
|
|
[A, B] = round(A, B, i); |
|
|
destroy(); |
|
|
const res = A.concat(B); |
|
|
A.fill(0); |
|
|
B.fill(0); |
|
|
return res; |
|
|
}, |
|
|
decrypt(x) { |
|
|
const { u, round, destroy } = PQ(x); |
|
|
// The FF1.Decrypt algorithm is similar to the FF1.Encrypt algorithm; |
|
|
// the differences are in Step 6, where: |
|
|
// 1) the order of the indices is reversed, |
|
|
// 2) the roles of A and B are swapped |
|
|
// 3) modular addition is replaced by modular subtraction, in Step 6vi. |
|
|
let [B, A] = [x.slice(0, u), x.slice(u)]; |
|
|
for (let i = 9; i >= 0; i--) |
|
|
[A, B] = round(A, B, i, true); |
|
|
destroy(); |
|
|
const res = B.concat(A); |
|
|
A.fill(0); |
|
|
B.fill(0); |
|
|
return res; |
|
|
}, |
|
|
}; |
|
|
} |
|
|
exports.FF1 = FF1; |
|
|
// Binary string which encodes each byte in little-endian byte order |
|
|
const binLE = { |
|
|
encode(bytes) { |
|
|
const x = []; |
|
|
for (let i = 0; i < bytes.length; i++) { |
|
|
for (let j = 0, tmp = bytes[i]; j < 8; j++, tmp >>= 1) |
|
|
x.push(tmp & 1); |
|
|
} |
|
|
return x; |
|
|
}, |
|
|
decode(b) { |
|
|
if (b.length % 8) |
|
|
throw new Error('Invalid binary string'); |
|
|
const res = new Uint8Array(b.length / 8); |
|
|
for (let i = 0, j = 0; i < res.length; i++) { |
|
|
res[i] = b[j++] | (b[j++] << 1) | (b[j++] << 2) | (b[j++] << 3); |
|
|
res[i] |= (b[j++] << 4) | (b[j++] << 5) | (b[j++] << 6) | (b[j++] << 7); |
|
|
} |
|
|
return res; |
|
|
}, |
|
|
}; |
|
|
function BinaryFF1(key, tweak = EMPTY_BUF) { |
|
|
const ff1 = FF1(2, key, tweak); |
|
|
return { |
|
|
encrypt: (x) => binLE.decode(ff1.encrypt(binLE.encode(x))), |
|
|
decrypt: (x) => binLE.decode(ff1.decrypt(binLE.encode(x))), |
|
|
}; |
|
|
} |
|
|
exports.BinaryFF1 = BinaryFF1; |
|
|
//# sourceMappingURL=ff1.js.map
|